图之强连通、强连通图、强连通分量 Tarjan算法
原文地址:https://blog.csdn.net/qq_16234613/article/details/77431043
一、解释
在有向图G中,如果两个顶点间至少存在一条互相可达路径,称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components)。
求解有向图的强连通分量算法有很多,例如Kosaraju,Gabow和Tarjan算法,其中Gabow和Tarjan算法时间复杂度要优于Kosaraju。
理解:
如果单纯将其看出图的话有点难以理解,但是当我们将其看成树,就很容易了。
如上图,如果两个点成强联通,那么显然在树中就会存在一个环,图中L-M-J-L和A-L-M-B-A成环所以组成的强联通分量。
二、Tarjan算法
Tarjan算法基于深度优先搜索树,其有两个重要变量DFN[u]:表示在深度搜索中遍历到该节点的次序。LOW(u)表示以u节点为树根,u及u以下树节点所能找到的最小次序号。注意Tarjan认为单个节点自身就是一个强联通分量,在处理数据时注意屏蔽。以上图为例,我们从A开始,
A:DFN[1] = 1; LOW(1)=1
L:DFN[2] = 2; LOW(2)=2
M:DFN[3] = 3; LOW(3)=3
J:DFN[4] = 4; LOW(4)=4
这时我们在J节点继续往下搜索时,发现L节点我们已经搜索过了,且L:LOW(2)=2,我们发现J:LOW(4)=4>L:LOW(2)=2,因此我们将其赋值LOW(4)=2,这说明此时我们发现了一个环,代表一个强联通分量。
下面继续:
J:DFN[4] = 4; LOW(4)=2
M:DFN[3] = 3; LOW(3)=2
B:DFN[5] = 4; LOW(5)=5
发现B到A:
B:DFN[5] = 4; LOW(5)=1
开始返回更新:
M:DFN[3] = 3; LOW(3)=1
L:DFN[2] = 2; LOW(2)=1
A:DFN[1] = 1; LOW(1)=1
发现DFN=LOW(1),弹出栈。
void tarjan(int u){ DFN[u]=LOW[u]=++time; //次序从1开始,初始时由于默认将DFN[u]=LOW[u]都置为次序号
// 将当前节点压栈,置位在栈中,已访问。
visit[u]=;
s.push(u);
instack[u]=; //取u节点的下一路径节点v,当没有v可取时也说明深度搜索已经到达当前最底部,这是我们函数返回寻找另一条路径。
for(int j=;j<G[u].size();j++){
int v=G[u][j];
if(visit[v]==){
tarjan(v);
// 在深度搜索返回时,如果v节点下存在子树,要将u节点的LOW[u]更新。
LOW[u]=min(LOW[u],LOW[v]);
}
else if(instack[v]){
// v节点已经被访问,并且在栈中,说明在当前路径上存在环,此处只是赋值,但并不代表在u子树的底下的多个节点没有比当前环更大的环。无法作为深度终止条件。
LOW[u]=min(LOW[u],DFN[v]);
}
} int m;
int num=; //对一个环计数计数
// 在深度搜索完结后返回时,判断DFN[u]==LOW[u],相等说明找到了一个环,将栈中节点弹出。注意tarjan算法认为单个节点也为环。
if(DFN[u]==LOW[u]){
// 将栈中节点弹出,并计数
do{
m=s.top();
s.pop();
instack[m]=;
num++;
}while(m!=u); // 只有环内节点数大于两个才是真正环。
if(num>){
// n个点两两相交(互相到达),则有n*(n-1)/2条连接线
total+=num*(num-)/;
}
} }
关于为啥只用访问一次:
开始疑惑,肯定会多条路径通过某一点,如果用visit记录访问记录的话,下一条路径不就会不能访问该点了吗?遂绘制丑图:
如图当我们访问到6节点时发现有环,且到达底点,这时根据算法开始返回,同时将2-6-5这条环也遍历掉(此时5号已访问压栈且有LOW=1)。也就是说在返回到1号节点开始出栈时,我们已经把1号节点的子树全部访问了一遍,该成环的也做了标记。在1号节点下的子节点不会通向1号节点以上的节点,比如0号节点,不然1号只能算一个类似于2-6-5这条环。至于从0号到5号就不用再判断了。所以遍历一遍就行。我觉得巧妙之处在于在深度向前搜索过程并没有处理数据,而在深度返回过程中开始更新数据,记录找到的回路,并且到达子树根节点DFN[u]==LOW[u]才开始出栈。
图之强连通、强连通图、强连通分量 Tarjan算法的更多相关文章
- 有向图强连通分量Tarjan算法
在https://www.byvoid.com/zhs/blog/scc-tarjan中关于Tarjan算法的描述非常好,转述如下: 首先解释几个概念: 有向图强连通分量:在有向图G中,如果两个顶点间 ...
- POJ1236_A - Network of Schools _强连通分量::Tarjan算法
Time Limit: 1000MS Memory Limit: 10000K Description A number of schools are connected to a compute ...
- 图的连通性:有向图强连通分量-Tarjan算法
参考资料:http://blog.csdn.net/lezg_bkbj/article/details/11538359 上面的资料,把强连通讲的很好很清楚,值得学习. 在一个有向图G中,若两顶点间至 ...
- 求图的强连通分量--tarjan算法
一:tarjan算法详解 ◦思想: ◦ ◦做一遍DFS,用dfn[i]表示编号为i的节点在DFS过程中的访问序号(也可以叫做开始时间)用low[i]表示i节点DFS过程中i的下方节点所能到达的开始时间 ...
- 有向图强连通分量 Tarjan算法
[有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...
- 图论-强连通分量-Tarjan算法
有关概念: 如果图中两个结点可以相互通达,则称两个结点强连通. 如果有向图G的每两个结点都强连通,称G是一个强连通图. 有向图的极大强连通子图(没有被其他强连通子图包含),称为强连通分量.(这个定义在 ...
- 强连通分量——tarjan算法
概念: 有向图强连通分量:在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶点强连通.如果有向图G的每两个顶点都强连 ...
- 【有向图】强连通分量-Tarjan算法
好久没写博客了(都怪作业太多,绝对不是我玩的太嗨了) 所以今天要写的是一个高大上的东西:强连通 首先,是一些强连通相关的定义 //来自度娘 1.强连通图(Strongly Connected Grap ...
- [有向图的强连通分量][Tarjan算法]
https://www.byvoid.com/blog/scc-tarjan 主要思想 Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树.搜索时,把当前搜索树中未处理的 ...
随机推荐
- CF797F Mice and Holes 贪心、栈维护DP
传送门 首先\(\sum c\)有些大,考虑将其缩小降低难度 考虑一个贪心:第一次所有老鼠都进入其左边第一个容量未满的洞(如果左边没有就进入右边第一个未满的洞),第二次所有老鼠都进入其右边第一个容量未 ...
- cmd命令入门
第一类: 介绍原生的DOS 首先在cmd命令输入help,看到如下图的结果,这里展示的原生的DOS命令. 这里列出了一些命令,可以自己试试的玩.一般看到一个命令后,如果没有说明文档,你就尝试的在其命令 ...
- Mybatis中 collection 和 association 的区别?
public class A{ private B b1; private List<B> b2;} 在映射b1属性时用association标签,(一对一的关系) 映射b2时用colle ...
- 身在上海的她,该不该继续"坚持"前端开发?
作者:13 GitHub:https://github.com/ZHENFENG13 版权声明:本文为原创文章,未经允许不得转载. 一 对于目前的IT行业,我实在不想她还没在这个行业中站稳脚跟就开始有 ...
- 理解使用static import 机制
J2SE 1.5里引入了“Static Import”机制,借助这一机制,可以用略掉所在的类或接口名的方式,来使用静态成员.本文介绍这一机制的使用方法,以及使用过程中的注意事项. 在Java程序中,是 ...
- android开发之Tabhost刷新
在android中,使用tabHost的时候,如果tab被点击,该tab所对应的activity被加载了,从别的tab切换回来的时候,activity不会再次被创建了(onCreate),所以要想每次 ...
- 趟坑:使用pip安装TensorFlow
这几天在安装TensorFlow,看了很多教程,方法也试了几种. 最后还是用pip安装成功的,过程如下. 1.安装ubuntu后在 系统设置-软件与更新-附加驱动 里,更新N卡驱动. (N卡官网下载 ...
- C程序设计教学小结(选择结构)
1. 函数使用的三个问题 函数声明语句 void add(); 或 int add(int x,int y); 函数调用 add(); c=add(a,b) 函 ...
- JavaScript 编程易错点整理
Case 1: 通过getElementById("id")获得是一个DOM元素节点对象: 通过getElementsByTagName("tagName")获 ...
- Eclipse频繁崩溃问题待解决
---------------------------Eclipse---------------------------Java was started but returned exit code ...