python学习 day13 迭代器,生成器,枚举对象
一、复习
1.闭包:定义在函数内部的函数(被函数嵌套的函数)
2.装饰器:闭包的一个应用场景
-- 为一个函数添加新功能的工具
3.开放封闭原则:不能修改源代码,不能修改调用方式,但可以对外提供增加新功能的特性
小点:多个装饰器运行流程
def o1(func):
def inner(*args, **kwargs):
print('o1 ------------') #
result = func(*args, **kwargs)
print('o1 ============') #
return result
return inner def o2(func):
def inner(*args, **kwargs):
print('o2 ------------') #
result = func(*args, **kwargs)
print('o2 ============') #
return result
return inner
@o1
@o2
def fn2():
print('fn2 ============') #
fn2() # 函数调用位置
# # 执行流程:函数调用位置 => o1装饰器inner => o2装饰器inner => 本体fn2
# # => 回到o2装饰器inner =>回到o1装饰器inner => 回到函数调用位置 ##可通过debug走一遍看具体流程
def wrap1(func):
print('')
def inner1():
print('')
func() # 应该是自身的func
print('')
return inner1 def wrap2(func):
print('')
def inner2():
print('')
func() # 此处的func 是 inner1 即,运行 inner1() 等到上述执行完后在继续执行
print('')
return inner2
@wrap2 # func = wrap1() 执行返回inner1 即 func=inner1
@wrap1 # func = wrap2() 执行返回inner() 即 inner1 = inner2
def func():
print('') func() # 实际运行 inner2() #打印结果: 1,2,3,4,5,6,7
def wrap1(func):
print('')
def inner1():
print('')
func() # 此处的func是 inner2,即运行inner2()
print('')
return inner1 def wrap2(func):
print('')
def inner2():
print('')
func() # 此处为自身
print('')
return inner2
@wrap1 # func = wrap1() 执行返回inner1 本质上是 inner2 = inner1
@wrap2 # func = wrap2() 先执行返回inner2 即 func = inner2 代码的解释顺序决定的
def func():
print('') func() # func = inner2 而inner2=innser1 实际运行 inner1() #打印结果: 1,2,3,4,5,6,7
上述的差异,在于谁先给函数装饰,结果如上,逻辑暂没弄清
小点:多层嵌套的装饰器
def wrap(var):
def outer(func): # outer的参数是固定的,就是被装饰的函数对象
print(var)
def inner(*args, **kwargs):
print(111111111111111)
func(*args, **kwargs)
print(333333333333333)
return inner
return outer # 1.调用wrap返回outer
@wrap(0) # wrap(000) => outer => @outer => fn3 = outer(fn3)
##@wrap(0) 可看做是两种情况综合 先wrap(0),运行返回outer,
## 此时在运行@outer,接下来的是正常的装饰器节奏 def fn3():
print(222222222222222) #调用outer传入fn3返回inner给fn3
fn3() # # @wrap(000) # wrap(000) => outer => @outer => fn3 = outer(fn3) # # 3.调用fn3就是调用inner,在inner内部调用原fn3
二、迭代器
1、相关概念:
器:包含多个值得容器
迭代:循环反馈(一次从容器中取出一个值)
迭代器:从装有多个值的容器里取出一个值给外界
迭代器:从装有多个值得容器中一次取出一个值给外界
2、可迭代对象
对象:python中装有地址的一个变量
可迭代对象:该对象有_iter_()方法
可迭代对象通过调用_iter_()方法得到迭代器对象
3、迭代器对象
迭代器对象可以做到不依赖索引取值(一次从容器中取出一个值)
迭代器对象都存在_next_()方法,且通过该方法获取容器中的值,获取规则,从前往后一次一个
st1={3,2,6,5,9} #不清楚集合为什么打印的结果是从小到大,而其他不是
iter_obj=st1._iter_()
print(iter_obj) #<set_iterator object at 0x00000000021E13A8> #迭代器对象取一个值就少一个值(重点掌握)
print(iter_obj.__next__()) #
print(iter_obj.__next__()) #
print(iter_obj.__next__()) #
print(iter_obj.__next__()) #
print(iter_obj.__next__()) # #print(iter_obj.__next__()) #再加上一个,超出其范围,会报错
StopIteration ter_obj=st1._iter_() #若不加上这个迭代器对象,会输出结果为空,上面
已经取完其值
while True:
try:
ele = iter_obj.__next__()
print(ele)
except StopIteration: # 此处的try except 用来除去异常
# print("取完了") # 因为会存在无限循环,但是值不够的情况
break
4、for 循环
自带异常处理的while循环,自动获取被迭代对象的迭代器对象(即不需要人为添加._next_())
# for循环迭代器:
# -- 1.自动获取被迭代对象的迭代器对象;
# -- 2.在内部一次一次调用__next__()方法取值;
# -- 3.自动完成异常处理
for v in obj:
print(v)
if v == 2:
break print(obj.__iter__().__iter__().__iter__().__next__()) # 3 因为上面的for已经取了两个值
# print(obj.__iter__().__iter__().__iter__() is obj) # True
# 可迭代对象.__iter__()得到的是该对象的迭代器对象
# 迭代器对象.__iter__().__iter__()得到的就是迭代器对象本身
迭代器对象代码:
for v in 'abc'.__iter__():
print(v)
结果:
a
b
c for v in 'abc'.__iter__():
print(v)
结果:
a
b
c
# 为什么此处可以重复打印? 因为第二次重新给字符串装换到了迭代器对象
因此可以重复使用,而不是上面取完值后,下面没有输出结果
with open('abc.txt', 'r', encoding='utf-8') as f:
print(f.__next__())
print(f.__next__())
print(f.__next__()) #‘abc.txt’文件里存在多行数据,此时的print是一行打印一次,因此需要多个print
直接:
可迭代对象:即有有__iter__()方法的对象,调用该方法返回迭代器对象
str | list | tuple | dict | set | range() | file | 迭代器对象 | enumerate() | 生成器
迭代器对象:有__next__()方法的对象,也就是用该方法一次从迭代器对象中获取一个值,取出一个少一个
file | enumerate() | 生成器
重点:
1.从迭代器对象中取元素,取一个少一个,如果要从头开始去,需要重新获得拥有所有元素的迭代器对象
2.迭代器对象也有__iter__()方法,调用后得到的是自己本身(当前含义几个元素,得到的就只有几个元素的迭代器对象)
3、对于for循环迭代:
1.自动获取被迭代对象的迭代器对象
2.在内部一次一次调用__next__()方法取值;
3.自动完成异常处理
三、生成器
# 生成器:就是一个迭代器对象
# 包含yield关键字的函数就是生成器
# 该函数名()得到的是生成器对象,且不会执行函数体
# 在函数内部执行一次,在遇到下一个yield时停止,且可以拿到yield的返回值
def my_yield():
print('first')
yield 1
print('second')
yield 2
print('Third')
yield 3
g=my_yield() next(g)
next(g)
next(g)
#以下为结果: 只打印函数体
first
second
Third print(next(g)
print(next(g)
print(next(g)
#以下为结果: 函数体和返回值都打印
first
1
second
2
Third
3
打印生成器的结果1
def my_yield():
print('first')
yield 1
print('second')
yield 2
print('Third')
yield 3 for i in my_yield():
print(i) #下面为结果:
first
1
second
2
Third
3 yields=my_yield()
print(yields)
#以下为结果:
<generator object my_yield at 0x000000000216A390> yields=my_yield()
print(list(yields))
#以下为结果:
first
second
Third
[1, 2, 3]
打印生成器的结果2
总结:
按 顺序打印函数体和返回值:
for 循环 print(next(i)) 先打印函数体后打印返回值:
print(list(i)) 用其他类型数据转换 直接打印函数体:
next(i) 直接打印生成器地址:
print(i) 建议日常使用for循环和next方式取值
生成器打印结果总结
四‘枚举对象 ’
enumerate
通过for迭代器 循环遍历 可迭代对象,需要知道迭代的索引
#从上一次停止的位置紧着往下走,在再遇到下一个yield时停止,且可以拿到yield的返回值
# 生成器可以被for循环迭代
ls = [1, 3, 5, 7, 9]
for i, v in enumerate(ls):
print(i, v)
结果:
0 1
1 3
2 5
3 7
4 9
小点:
dict={'a':1,'b':2}
lis=[]
for i in enumerate(dict):
lis.append(i)
print(lis)
#[(0, 'a'), (1, 'b')] #此处可见 仅用一个值i就可将索引与对应的值导出
#可利用此种特性将数据成行打印 #也可利用两个参数,将其换行打印
python学习 day13 迭代器,生成器,枚举对象的更多相关文章
- Python学习 :迭代器&生成器
列表生成式 列表生成式的操作顺序: 1.先依次来读取元素 for x 2.对元素进行操作 x*x 3.赋予变量 Eg.列表生成式方式一 a = [x*x for x in range(10)] pri ...
- Python学习day17 迭代器&生成器
迭代器&生成器 1. 迭代器 1.1 迭代器 迭代:迭代是重复反馈过程的活动,其目的通常是为了逼近所需目标或结果.每一次对过程的重复称为一次"迭代" 迭代器:帮助对某种对象 ...
- python学习10—迭代器、三元表达式与生成器
python学习10—迭代器.三元表达式与生成器 1. 迭代器协议 定义:对象必须提供一个next方法,执行该方法或者返回迭代中的下一项,或者返回一个StopIteration异常,以终止迭代(只能往 ...
- python 全栈开发,Day13(迭代器,生成器)
一.迭代器 python 一切皆对象 能被for循环的对象就是可迭代对象 可迭代对象: str,list,tuple,dict,set,range 迭代器: f1文件句柄 dir打印该对象的所有操作方 ...
- Python学习之旅—生成器对象的send方法详解
前言 在上一篇博客中,笔者带大家一起探讨了生成器与迭代器的本质原理和使用,本次博客将重点聚焦于生成器对象的send方法. 一.send方法详解 我们知道生成器对象本质上是一个迭代器.但是它比迭代器对 ...
- Python学习笔记之生成器、迭代器和装饰器
这篇文章主要介绍 Python 中几个常用的高级特性,用好这几个特性可以让自己的代码更加 Pythonnic 哦 1.生成器 什么是生成器呢?简单来说,在 Python 中一边循环一边计算的机制称为 ...
- python学习-38迭代器和生成器
迭代器和生成器 ---- 迭代器协议和for循环工作机制 1.迭代器协议:对象必须提供一个next方法,执行该方法要么返回迭代中的下一项,要么引起一个Stoplteration异常,以终止迭代(只能往 ...
- python各种模块,迭代器,生成器
从逻辑上组织python代码(变量,函数,类,逻辑:实现一个功能) 本质就是.py结尾的python文件(文件名:test.py,对应的模块名就是test) 包:用来从逻辑上组织模块的,本质就是一个目 ...
- python杂记-4(迭代器&生成器)
#!/usr/bin/env python# -*- coding: utf-8 -*-#1.迭代器&生成器#生成器#正确的方法是使用for循环,因为generator也是可迭代对象:g = ...
随机推荐
- [openjudge-贪心]删数问题
题目描述 题目描述 键盘输入一个高精度的正整数N,去掉其中任意k个数字后剩下的数字按原左右次序将组成一个新的正整数.编程对给定的N和k,寻找一种方案使得剩下的数字组成的新数最小. 输出应包括所去掉的数 ...
- 剑指offer(30)连续子数组和的最大值
题目描述 HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学.今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决.但是,如果向量 ...
- [译]课程 1: 使用 Quartz
译者注: 原文在这 Lesson 1: Using Quartz 在你使用调度器之前, 你需要先实例化(能猜到是谁么?). 要实例化, 请使用 ISchedulerFactory 的实现. 译者注: ...
- git如何撤销git add操作?
答: 使用git reset <file name>即可撤销
- 在myeclipse中使用log4j记录日志
1.从官方网站下载 jakarta-log4j-1.2.17.tar.gz http://logging.apache.org/log4j/1.2/download.html 2.在eclipse中将 ...
- jQuery validator plugin 之 custom methods 案例1:multi email
1.add method jQuery.validator.addMethod( "multiemail", function (value, element) { var ema ...
- HTML基础【3】:列表标签
无序列表 作用:给一堆内容添加无序列表语义(一个没有先后顺序整体),列表中的条目不分先后 格式: li 英文是 list item,翻译为列表项 <h4>选择居住城市(CN)</h4 ...
- Linux常用命令——文件搜索命令
Linux常用命令——文件搜索命令 Linux 以#号开头的内容都是内容描述或配置项 find 描述:文件搜索 语法:find [搜索范围] [范围条件] . 当前目录 示例:[root@local ...
- 3、zabbix配置入门
Zabbix模板 zabbix组件: zabbix-server zabbix-database zabbix-web zabbix-agent zabbix-proxy ...
- rabbitMQ 的三种Exchange
rabbitMQ 的Exchange有3种路由方式: direct.fanout.topic ,以下为详细说明 1. Direct Exchange 处理路由键.需要将一个队列绑定到交换机上,要求 ...