1047: [HAOI2007]理想的正方形
Time Limit: 10 Sec Memory Limit: 162 MB
Submit: 4075 Solved: 2277
[Submit][Status][Discuss]
Description
有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值
的差最小。
Input
第一行为3个整数,分别表示a,b,n的值第二行至第a+1行每行为b个非负整数,表示矩阵中相应位置上的数。每
行相邻两数之间用一空格分隔。
100%的数据2<=a,b<=1000,n<=a,n<=b,n<=1000
Output
仅一个整数,为a*b矩阵中所有“n*n正方形区域中的最大整数和最小整数的差值”的最小值。
Sample Input
1 2 5 6
0 17 16 0
16 17 2 1
2 10 2 1
1 2 2 2
Sample Output
#include<iostream>
#include<cstdio>
using namespace std; const int MAXN=+;
const int INF=0x7fffffff; int a,b,n,ans=INF;
int s[MAXN][MAXN],mx[MAXN][MAXN],mn[MAXN][MAXN];
int val[MAXN],pos[MAXN],x[MAXN],y[MAXN]; int main()
{
scanf("%d %d %d",&a,&b,&n);
for(int i=;i<=a;i++)
for(int j=;j<=b;j++)
scanf("%d",&s[i][j]);
int l,r;
for(int i=;i<=a;i++)
{
l=,r=;
for(int j=;j<=b;j++)
{
while(l<r&&val[r-]<=s[i][j]) r--;
val[r]=s[i][j];pos[r]=j;r++;
if(pos[l]==j-n) l++;
if(j>=n) mx[i][j]=val[l];
}
l=,r=;
for(int j=;j<=b;j++)
{
while(l<r&&val[r-]>=s[i][j]) r--;
val[r]=s[i][j];pos[r]=j;r++;
if(pos[l]==j-n) l++;
if(j>=n) mn[i][j]=val[l];
}
}
for(int i=n;i<=b;i++)
{
l=,r=;
for(int j=;j<=a;j++)
{
while(l<r&&val[r-]<=mx[j][i]) r--;
val[r]=mx[j][i];pos[r]=j;r++;
if(pos[l]==j-n) l++;
if(j>=n) x[j]=val[l];
}
l=,r=;
for(int j=;j<=a;j++)
{
while(l<r&&val[r-]>=mn[j][i]) r--;
val[r]=mn[j][i];pos[r]=j;r++;
if(pos[l]==j-n) l++;
if(j>=n) y[j]=val[l];
}
for(int i=n;i<=a;i++) ans=min(ans,x[i]-y[i]);
}
printf("%d\n",ans);
return ;
}
1047: [HAOI2007]理想的正方形的更多相关文章
- bzoj 1047 : [HAOI2007]理想的正方形 单调队列dp
题目链接 1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2369 Solved: 1266[Submi ...
- BZOJ 1047: [HAOI2007]理想的正方形( 单调队列 )
单调队列..先对每一行扫一次维护以每个点(x, y)为结尾的长度为n的最大最小值.然后再对每一列扫一次, 在之前的基础上维护(x, y)为结尾的长度为n的最大最小值. 时间复杂度O(ab) (话说还是 ...
- [BZOJ 1047] [HAOI2007] 理想的正方形 【单调队列】
题目链接:BZOJ - 1047 题目分析 使用单调队列在 O(n^2) 的时间内求出每个 n * n 正方形的最大值,最小值.然后就可以直接统计答案了. 横向有 a 个单调队列(代码中是 Q[1] ...
- 1047: [HAOI2007]理想的正方形 - BZOJ
Description 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小.Input 第一行为3个整数,分别表示a,b,n的值第二行至第a ...
- 【BZOJ】1047: [HAOI2007]理想的正方形(单调队列/~二维rmq+树状数组套树状数组)
http://www.lydsy.com/JudgeOnline/problem.php?id=1047 树状数组套树状数组真心没用QAQ....首先它不能修改..而不修改的可以用单调队列做掉,而且更 ...
- BZOJ 1047: [HAOI2007]理想的正方形
题目 单调队列是个很神奇的东西,我以前在博客写过(吧) 我很佩服rank里那些排前几的大神,700ms做了时限10s的题,简直不能忍.(但是我还是不会写 我大概一年半没写单调队列,也有可能根本没有写过 ...
- BZOJ 1047: [HAOI2007]理想的正方形 单调队列瞎搞
题意很简明吧? 枚举的矩形下边界和右端点即右下角,来确定矩形位置: 每一个纵列开一个单调队列,记录从 i-n+1 行到 i 行每列的最大值和最小值,矩形下边界向下推移的时候维护一下: 然后在记录的每一 ...
- bzoj 1047: [HAOI2007]理想的正方形【单调队列】
没有复杂结构甚至不长但是写起来就很想死的代码类型 原理非常简单,就是用先用单调队列处理出mn1[i][j]表示i行的j到j+k-1列的最小值,mx1[i][j]表示i行的j到j+k-1列的最大值 然后 ...
- BZOJ1047: [HAOI2007]理想的正方形 [单调队列]
1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2857 Solved: 1560[Submit][St ...
随机推荐
- 判断当前用户是否在某个SharePoint组内
/// <summary> /// 判断当前登录人是否在sharepoint组中 /// </summary> /// <param name="current ...
- 05-树9 Huffman Codes (30 分)
In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redunda ...
- 如何将拷贝过来的数据 *.ibd 文件生效
1.将拷贝的数据文件 "qqq.idb"放在自己的数据库中. 一般存放在 mysql/ data/ databasename 下 2. "qqq.idb" ...
- (转)linux正则表达式详解
linux正则表达式详解 http://blog.csdn.net/wuliowen/article/details/64131815 1:什么是正则表达式: 简单的说,正则表达式就是处理字符串的方法 ...
- 基于nginx的FastCGI的缓存配置
废话不多说了, 直接上配置, 其实 fastcgi_cache 和 proxy_cache 的配置基本一样: # !缓存文件存放目录 # levels 缓存层次 # keys_zone 缓存空间名和共 ...
- Linux - 数值运算
Shell - 数值运算 因为shell脚本是属于弱语言,没有变量类型的概念,所以定义变量会默认为字符串.就算看上去是一个数字,当直接进行计算时,就会出错: x=1 echo $x+=1 # 输出1+ ...
- 移动端,点击a标签链接的pdf报错 Resource interpreted as Document but transferred with MIME type application/pdf
源码: <a href="11.pdf" class="actcont_a fl report_a" style="display: block ...
- 链接文字<a>保持原有的字体颜色
<style type="text/css"> #red {color: red;} #blue {color: blue;} #orange {color: oran ...
- 用C++/CLI搭建C++和C#之间的桥梁
一.简单用法 C#和C++是非常相似的两种语言,然而我们却常常将其用于两种不同的地方,C#得益于其简洁的语法和丰富的类库,常用来构建业务系统.C++则具有底层API的访问能力和拔尖的执行效率,往往用于 ...
- nbtscan ip地址
查找网络(192.168.1.0)中netbios名字信息,对应命令如下: nbtscan 192.168.1.1-254 找到有netbios名字后,可以使用如下的命令查看这些主机运行的服务. nb ...