题意:给你一个数组a[n],对于数组每次建立一个完全k叉树,对于每个节点,如果父节点的值比这个节点的值大,那么就是一个违规点,统计出1~n-1完全叉树下的违规点的各自的个数。

一个直觉的思想就是暴力,因为完全k叉树当k很大的时候,其实层数是特别小的,所以感觉暴力是可以的。注意到一个完全k叉树下v节点的儿子的公式是:

k*(v-1)+2...kv+1,相应的父节点的公式是 (v+k-2)/k。儿子的编号是连续的,如果我们可以对每个节点快速的求出连续编号的节点有多少个数比它小我们就可以快速的更新答案了,但是如果对每个节点都这样做的话就至少是一个O(n^2)级别的做法。注意到对于一棵完全k叉树来说,只有内节点才需要统计,叶节点并不需要。而对于一个大小为n的完全k叉树来说,内节点的个数是O(n/k)的,因此总的内节点个数就是n/1+n/2+n/3+...n/n-1,即O(nlogn)。

然后就是单次询问一段连续的区间里有多少个数比v小。这里我没有想到什么好的简便的方法,不过函数式线段树是一个解决方法。root[i]表示的是用a[i]~a[n]的值建立的线段树,当我需要询问某个区间[l,r]的小于等于v的数有多少个数时,只需要query(root[l],1,v)-query(root[r],1,v)即可。空间复杂度是O(nlogn),时间复杂度是单次询问O(logn),最后总的复杂度就是O(nlog^2 n)

#pragma warning(disable:4996)
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <string>
#include <vector>
#include <queue>
using namespace std; #define maxn 200500
#define maxc maxn*20 int n;
int a[maxn], b[maxn];
int res[maxn];
int root[maxn];
int nsize; int lc[maxc], rc[maxc];
int sum[maxc];
int tot; int insert(int rt, int L, int R, int v)
{
int cur = tot++;
if (L == R){
sum[cur] = sum[rt] + 1;
return cur;
}
int M = (L + R) >> 1;
if (v <= M){
rc[cur] = rc[rt];
lc[cur] = insert(lc[rt], L, M, v);
}
else{
lc[cur] = lc[rt];
rc[cur] = insert(rc[rt], M + 1, R, v);
}
sum[cur] = sum[lc[cur]] + sum[rc[cur]];
return cur;
} int query(int rt, int L, int R, int l, int r)
{
if (l == L&&r == R){
return sum[rt];
}
int M = (L + R) >> 1;
if (r <= M){
return query(lc[rt], L, M, l, r);
}
else if (l>M){
return query(rc[rt], M + 1, R, l, r);
}
else{
return query(lc[rt], L, M, l, M) + query(rc[rt], M + 1, R, M + 1, r);
}
} int main()
{
while (cin >> n)
{
for (int i = 1; i <= n; ++i) {
scanf("%d", a + i);
b[i] = a[i];
}
sort(b+1, b + n+1);
nsize = unique(b+1, b + n+1) - b;
for (int i = 1; i <= n; ++i){
a[i] = lower_bound(b + 1, b + nsize, a[i]) - b + 1;
}
memset(res, 0, sizeof(res));
tot = 1;
root[n + 1] = tot;
lc[tot] = rc[tot] = sum[tot] = 0;
tot++;
for (int i = n; i >= 1; i--){
root[i] = insert(root[i + 1], 1, nsize, a[i]);
}
for (int k = 1; k <= n - 1; ++k){
int maxBound = (n + k - 2) / k;
for (int v = 1; v <= maxBound; ++v){
int cnt = 0;
int lbound = k*(v - 1) + 2;
int rbound = min(k*v + 1, n);
cnt = query(root[lbound], 1, nsize, 1, a[v] - 1)- query(root[rbound+1], 1, nsize, 1, a[v] - 1);
res[k] += cnt;
}
}
for (int i = 1; i <= n - 1; ++i){
if (i > 1) printf(" ");
printf("%d", res[i]);
}
puts("");
}
return 0;
}

Codeforces538F A Heap of Heaps(函数式线段树)的更多相关文章

  1. [codeforces538F]A Heap of Heaps

    [codeforces538F]A Heap of Heaps 试题描述 Andrew skipped lessons on the subject 'Algorithms and Data Stru ...

  2. 学习笔记--函数式线段树(主席树)(动态维护第K极值(树状数组套主席树))

    函数式线段树..资瓷 区间第K极值查询 似乎不过似乎划分树的效率更优于它,但是如果主席树套树状数组后,可以处理动态的第K极值.即资瓷插入删除,划分树则不同- 那么原理也比较易懂: 建造一棵线段树(权值 ...

  3. POJ2104 K-th number 函数式线段树

    很久没打代码了,不知道为什么,昨天考岭南文化之前突然开始思考起这个问题来,这个问题据说有很多种方法,划分树什么的,不过对于我现在这种水平还是用熟悉的线段树做比较好.这到题今年8月份的时候曾经做过,那个 ...

  4. BZOJ 3123 森林(函数式线段树)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=3123 题意: 思路:总的来说,查询区间第K小利用函数式线段树的减法操作.对于两棵树的合并 ...

  5. BZOJ 3207 花神的嘲讽计划Ⅰ(函数式线段树)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=3207 题意:给出一个数列,若干询问.每个询问查询[L,R]区间内是否存在某个长度为K的子 ...

  6. [Usaco2014 Open Gold ]Cow Optics (树状数组+扫描线/函数式线段树)

    这道题一上手就知道怎么做了= = 直接求出原光路和从目标点出发的光路,求这些光路的交点就行了 然后用树状数组+扫描线或函数式线段树就能过了= = 大量的离散+模拟+二分什么的特别恶心,考试的时候是想到 ...

  7. hdu 5111 树链剖分加函数式线段树

    这题说的是给了两棵树,各有100000 个节点,然后Q个操作Q<=50000; 每个操作L1 R1 L2 R2.因为对于每棵树都有一个与本棵树其他点与众不同的值, 最后问 在树上从L1到R1这条 ...

  8. BZOJ 3110([Zjoi2013]K大数查询-区间第k大[段修改,在线]-树状数组套函数式线段树)

    3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec   Memory Limit: 512 MB Submit: 418   Solved: 235 [ Submit][ ...

  9. 【bzoj3065】: 带插入区间K小值 详解——替罪羊套函数式线段树

    不得不说,做过最爽的树套树———— 由于有了区间操作,我们很容易把区间看成一棵平衡树,对他进行插入,那么外面一层就是平衡树了,这就与我们之前所见到的不同了.我们之前所见到的大多数是线段树套平衡树而此题 ...

随机推荐

  1. python练习1 ——菱形打印

    具体请看链接: 链接 2018-09-29 12:51:45

  2. python3知识点之---------字符串的介绍

    1. 定义 其实字符串就是一系列字符,用引号括起来的就是字符串,其中的引号可以是单引号或者双引号. 比如 "This is a string"   'This is a strin ...

  3. Virtual box 虚拟机 不可使用的一种解决方法

    在win7下开着一个ubuntu虚拟机,写了好几小时代码,然后饿了,去吃点东西 回来发现,电脑由于win7 自动更新已经重启 ubuntu下的代码我已经走开时保存过了,所以不怎么担心 但是打开virt ...

  4. Python 3.x的编码问题

    Python 3的源码.py文件的默认编码方式为UTF-8(Python 2.x的默认编码格式为unicode). encode的作用,使我们看到的直观的字符转换成计算机内的字节形式. decode刚 ...

  5. 手机App测试如何获取包名的入口【两种方式】

    在进行手机APP测试的时候经常要获取包名.那么何为包名呢?简单来说其实就是手机APP的安装apk文件的名称,每个手机APP(软件)的包名都是唯一的. 那么我们怎样来获取包名以及包名的入口呢? 方法一: ...

  6. PHP7 深入理解

    读 PHP7的内核剖析 php7-internal 记录 3 PHP的相关组成 3.1 SAPI php常见的四种运行模式 SAPI:Server Application Programming In ...

  7. Linux学习15_CentOS6.5下netcat工具安装教程

    1.下载 下载地址:http://sourceforge.net/projects/netcat/files/netcat/0.7.1/ 下载的是netcat-0.7.1.tar.gz版本 2.拷贝 ...

  8. Nginx 战斗准备 —— 优化指南

    大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了!而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能 ...

  9. 整合S2SH框架

    S2SH框架(Struts2,Spring,Hibernate)整合 Struts2.Hibernate和Spring.其中在Struts2部分主要为MVC设计思想,Struts2的处理流程及配置,S ...

  10. 再理一下prerouting和postrouting等插入点

    这些地方的准确翻译是hook点(hook点是一个土的说法,学名叫rule chain,规则链)这些规则链是内核netfilter架构布置在内核里面的,然后iptables是利用了这套基础架构,想起了内 ...