uoj problem 21 缩进优化
题目:
小O是一个热爱短代码的选手。在缩代码方面,他是一位身经百战的老手。世界各地的OJ上,很多题的最短解答排行榜都有他的身影。这令他感到十分愉悦。
最近,他突然发现,很多时候自己的程序明明看起来比别人的更短,实际代码量却更长。这令他感到很费解。经过一番研究,原来是因为他每一行的缩进都全是由空格组成的,大量的空格让代码量随之增大。
现在设小O有一份 \(n\) 行的代码,第 \(i\) 行有 \(a_i\) 个空格作为缩进。
为解决这一问题,小O要给自己文本编辑器设定一个正整数的默认TAB宽度 \(x\),然后对于每一行,编辑器从头至尾不断把连续 \(x\) 个空格替换成一个TAB,直到剩余空格数不足 \(x\) 个。
最终缩进所占代码量为空格数与TAB数的和。请你帮小O选择一个合适的 \(x\),使得缩进所占代码量最小。
题解:
我们容易发现对于一个确定的\(x\),答案即为\(\sum_{i=1}^n[\frac{a_i}{x} + (a_i \mod x)]\)
因为有一个模运算,所以我们不好求值.
我们考虑去掉这个模运算.我们考虑计算每个转化可以减少多少代码量.
对于一个\(siz\)为\(x\)的的TAB转化,可以减少\(x-1\)的代码量.
所以我们发现对于一个确定的x,可以减少的代码量为\((x-1)\sum_{i=1}^n[\frac{a_i}{x}]\)
然后我们考虑枚举,
首先我们枚举\(x\),然后枚举\([\frac{a_i}{x}]\)的值
然后可以利用桶统计在\([x*\frac{a_i}{x},x*(\frac{a_i}{x}+1))\)内的数的个数
更新答案即可.
容易发现这是\(O(nlogn)\)的.
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
#define rg register int
inline void read(int &x){
x=0;char ch;bool flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;
}
const int maxn = 1000010;
int c[maxn];
int main(){
int n;read(n);
int m = 0;ll ans = 0;
for(rg i=1,x;i<=n;++i){
read(x);m = max(m,x);
++ c[x];ans += x;
}
for(rg i=1;i<=m;++i) c[i] += c[i-1];
ll del = 0,res = 0;
for(rg x = 2;x <= m;++x){
res = 0;
for(rg y=1;y <= (m/x);++y){
res += 1LL*y*(c[min(x*(y+1)-1,m)] - c[x*y-1]);
}
del = max(del,res*(x-1));
}
printf("%lld\n",ans-del);
return 0;
}
uoj problem 21 缩进优化的更多相关文章
- ●UOJ 21 缩进优化
题链: http://uoj.ac/problem/21 题解: ...技巧题吧 先看看题目让求什么: 令$F(x)=\sum_{i=1}^{n}(\lfloor a[i]/x \rfloor +a[ ...
- UOJ#21 【UR #1】缩进优化
传送门 http://uoj.ac/problem/21 枚举 (调和级数?) $\sum_{i=1}^{n} (a_i / x + a_i \bmod x) =\sum a_i - (\sum_{i ...
- UOJ_21_【UR #1】缩进优化_数学
UOJ_21_[UR #1]缩进优化_数学 题面:http://uoj.ac/problem/21 最小化$\sum\limits{i=1}^{n}a[i]/x+a[i]\;mod\;x$ =$\su ...
- uoj problem 10
uoj problem 10 题目大意: 给定任务若干,每个任务在\(t_i\)收到,需要\(s_i\)秒去完成,优先级为\(p_i\) 你采用如下策略: 每一秒开始时,先收到所有在该秒出现的任务,然 ...
- (Problem 21)Amicable numbers
Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into ...
- Problem 21
Problem 21 https://projecteuler.net/problem=21 Let d(n) be defined as the sum of proper divisors of ...
- 【UOJ#21】【UR#1】缩进优化
我好弱啊,什么题都做不出来QAQ 原题: 小O是一个热爱短代码的选手.在缩代码方面,他是一位身经百战的老手.世界各地的OJ上,很多题的最短解答排行榜都有他的身影.这令他感到十分愉悦. 最近,他突然发现 ...
- 【uoj#21】[UR #1]缩进优化 数学
题目描述 给出 $n$ 个数 ,求 $\text{Min}_{x=1}^{\infty}\sum\limits_{i=1}^n(\lfloor\frac {a_i}x\rfloor+a_i\ \tex ...
- HDU 2993 MAX Average Problem(斜率优化)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2993 Problem Description Consider a simple sequence w ...
随机推荐
- windows常用dos命令
常用命令: d: 回车 磁盘切换 dir: 查看该目录下所有的文件和文件夹: md: 创建文件加 rd: 删除目录 cd: 进入指定的目录 cd..:回退到上级目录 cd\ :回退到根目录 de ...
- Linux下安装 activemq 并指定jdk 1.8
1. 下载安装包 <apache-activemq-5.15.4-bin.tar.gz> 下载地址:https://pan.baidu.com/s/18xzjBAchjWqsHNA1HuY ...
- Q: Why can't I access the Site Settings of my SharePoint site? 'File Not Found'
Q: I am trying to access the Site Settings of my SharePoint site, but I get a File Not Found error, ...
- 【BZOJ4542】[Hnoi2016]大数 莫队
[BZOJ4542][Hnoi2016]大数 Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个 ...
- 【BZOJ1444】[Jsoi2009]有趣的游戏 AC自动机+概率DP+矩阵乘法
[BZOJ1444][Jsoi2009]有趣的游戏 Description Input 注意 是0<=P Output Sample Input Sample Output HINT 30%的 ...
- Gone Fishing(贪心)
Gone Fishing John is going on a fising trip. He has h hours available (1 ≤ h ≤ 16), and there are n ...
- G - 湫湫系列故事——减肥记I
G - 湫湫系列故事——减肥记I Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u De ...
- Eclipse 查看第三方jar包文件源代码解决方法
1.打开第三方依赖包,源文件的快捷键:ctrl + mouseClick 2.由于我们下载的第三方jar 包,如Spring等相关的依赖包时,并没有附加下载相应的源文件,所以经常出现如图的这种问题. ...
- python+NLTK 自然语言学习处理四:获取文本语料和词汇资源
在前面我们通过from nltk.book import *的方式获取了一些预定义的文本.本章将讨论各种文本语料库 1 古腾堡语料库 古腾堡是一个大型的电子图书在线网站,网址是http://www.g ...
- 使用基本 SQL 命令
概述 在本教程中,将学习结构化查询语言 (SQL),包括: 使用基本 SQL 命令 执行基本数据操做 数据库和 SQL 在本系列教程中,目前我们使用平面文本文件来存储数据.平面文本文件可能适合相对较少 ...