题意

题目链接

构造一个\(n * n\)的矩阵,要求任意相邻的两个数\(a,b\),使得\(max(a,b) \% min(a,b) \not = 0\)

Sol

我的思路:

假设\(mod = 1\),那么可以在第一行放2 3 4 5 \(\dots\),第一列同理也这样放

对于任意位置\(i\),一定满足要求的一个数是a[i - 1][j] * a[i][j - 1] / __gcd(a[i - 1][j], a[i][j - 1]) + 1

然而最后的数大到上天啊。。。

标算挺巧妙的,首先把整个图黑白染色,那么同色点之间是互不影响的。

考虑构造\(mod = 1\)的矩阵。

若白点的权值确定了,那么黑点的权值应当是所有相邻白点的\(lcm\)+1,

那所有白点的权值怎么确定呢?

考虑直接用素数填充对于正对角线和负对角线上的每个点分配一个不同的素数

那么任意白点的权值为所在正对角线上的素数 乘 负对角线的素数

这样算出来最大的$a_{ij} = 414556486388264 $,满足要求

不过为啥数组要开1000才能过???


#include<bits/stdc++.h>
#define int long long
using namespace std;
const int MAXN = 1e5 + 10;
int N;
int a[1001][1001], vis[MAXN], prime[MAXN], tot;
void GetPhi() {
vis[1] = 1;
for(int i = 2; i; i++) {
if(!vis[i]) prime[++tot] = i;
if(tot == 1000) break;
for(int j = 1; j <= tot && (i * prime[j] <= 10000); j++) {
vis[i * prime[j]] = 1;
if(!(i % prime[j])) break;
}
}
}
int lcm(int x, int y) {
if(x == 0 || y == 0) return x + y;
return x / __gcd(x, y) * y;
}
main() {
GetPhi();
cin >> N;
if(N == 2) {
printf("4 7\n23 10");
return 0;
}
for(int i = 1; i <= N; i++)
for(int j = 1; j <= N; j++)
if(!((i + j) & 1)) a[i][j] = prime[(i + j) / 2] * prime[N + (i - j) / 2 + (N + 1) / 2];
for(int i = 1; i <= N; i++)
for(int j = 1; j <= N; j++)
if(!a[i][j])
a[i][j] = lcm(lcm(a[i - 1][j], a[i][j - 1]), lcm(a[i][j + 1], a[i + 1][j])) + 1;
for(int i = 1; i <= N; i++, puts(""))
for(int j = 1; j <= N; j++)
cout << a[i][j] << " ";
return 0;
}

agc027D - Modulo Matrix(构造 黑白染色)的更多相关文章

  1. AGC 027D.Modulo Matrix(构造 黑白染色)

    题目链接 \(Description\) 给定\(n\),要求构造一个\(n\times n\)的矩阵,矩阵内的元素两两不同,且任意相邻的两个元素\(x,y\),满足\(\max(x,y)\ \mat ...

  2. AGC027 D - Modulo Matrix 构造

    目录 题目链接 题解 代码 题目链接 AGC027 D - Modulo Matrix 题解 从第左上角第一个点开始染色,相邻不同色,染法唯一 那么一个点的四周与他不同色,我们另这个点比四周都大,那么 ...

  3. AtCoder Grand Contest 027 (AGC017) D - Modulo Matrix 构造

    原文链接https://www.cnblogs.com/zhouzhendong/p/AGC027C.html 题解 首先我们假装 max mod min = 1 然后对着这个构造. 将各自黑白染色, ...

  4. 【AGC018F】Two Trees 构造 黑白染色

    题目描述 有两棵有根树,顶点的编号都是\(1\)~\(n\). 你要给每个点一个权值\(a_i\),使得对于两棵树的所有顶点\(x\),满足\(|x\)的子树的权值和\(|=1\) \(n\leq 1 ...

  5. 「AGC027D」Modulo Matrix

    「AGC027D」Modulo Matrix 传送门 神仙构造题. 首先考虑一个非常自然的思路,我们把棋盘黑白染色后会变成一个二分图,黑色棋子只会与白色棋子相邻. 也就是说,我们可以将二分图的一部随便 ...

  6. 【BZOJ-1976】能量魔方Cube 最小割 + 黑白染色

    1976: [BeiJing2010组队]能量魔方 Cube Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 884  Solved: 307[Submi ...

  7. BZOJ-2756 奇怪的游戏 黑白染色+最大流+当前弧优化+二分判断+分类讨论

    这个题的数据,太卡了,TLE了两晚上,各种调试优化,各种蛋疼. 2756: [SCOI2012]奇怪的游戏 Time Limit: 40 Sec Memory Limit: 128 MB Submit ...

  8. POJ 1466 Girls and Boys 黑白染色 + 二分匹配 (最大独立集) 好题

    有n个人, 其中有男生和女生,接着有n行,分别给出了每一个人暗恋的对象(不止暗恋一个) 现在要从这n个人中找出一个最大集合,满足这个集合中的任意2个人,都没有暗恋这种关系. 输出集合的元素个数. 刚开 ...

  9. acdream 1056 (黑白染色)

    题意:给你一些关系,每个关系是两只马的名字,表示这两个马不能在一个分组里,问你能否将这些马分成两组. 黑白染色,相邻的点染不同颜色.bfs搞即可,水题. /* * this code is made ...

随机推荐

  1. linux下redis的安装与django-redis使用方法

    Redis 是一个开源(BSD许可)的,内存中的数据结构存储系统,它可以用作数据库.缓存和消息中间件. Redis支持五种数据类型:string(字符串),hash(哈希),list(列表),set( ...

  2. swift基础语法之——变量和常量

    swift使用let关键字来定义常量,使用var来定义变量,变量在使用前必须初始化(赋初始值) swift是类型安全语音,即不同类型的变量不能一起运算,必须转成同一类型才可以 变量的类型在声明时不必给 ...

  3. Qt 学习之路 2(13):对话框简介

    Qt 学习之路 2(13):对话框简介  豆子  2012年9月14日  Qt 学习之路 2  53条评论 对话框是 GUI 程序中不可或缺的组成部分.很多不能或者不适合放入主窗口的功能组件都必须放在 ...

  4. windwos-sshfs

    从 http://www.jianshu.com/p/d79901794e3d 转载 目的 最近因为需要在linux虚拟机里进行开发程序,虽然在linux里有超强的编辑器vim,但vim开发html前 ...

  5. 读经典——《CLR via C#》(Jeffrey Richter著) 笔记_运行时解析类型引用

    public sealed class Program{ public static void Main() { System.Console.WriteLine("Hi"); } ...

  6. POJ1185炮兵阵地(状态压缩DP)

    POJ飞翔.数据弱 ZQOJ飞翔 数据强 Description 司令部的将军们打算在N×M的网格地图上部署他们的炮兵部队.一个N×M的地图由N行M列组成,地图的每一格可能是山地(用"H&q ...

  7. [例] 用MappedByteBuffer更新文件内容

    import java.io.IOException; import java.io.RandomAccessFile; import java.nio.MappedByteBuffer; impor ...

  8. shell编程上

    1.1  前言 1.1.1  为什么学Shell Shell脚本语言是实现Linux/UNIX系统管理及自动化运维所必备的重要工具, Linux/UNIX系统的底层及基础应用软件的核心大都涉及Shel ...

  9. Nginx常用rewrite跳转重定向实例

    1.将www.myweb.com/connect 跳转到connect.myweb.com rewrite ^/connect$ http://connect.myweb.com permanent; ...

  10. centos7-网络与防火墙常用命令

    1.网络配置 vi /etc/sysconfig/network-scripts/ifcfg-ens33 BOOTPROTO="static" IPADDR=192.168.163 ...