题意及思路

这个题加深了我对主席树的理解,是个好题。每次更新某个点的距离时,是以之前对这个点的插入操作形成的线段树为基础,在O(logn)的时间中造出了一颗新的线段树,相比直接创建n颗线段树更省时间。比较的时候二分比较,为了加快比较给每个点设置一个hash值。

代码:

#include <bits/stdc++.h>
using namespace std;
const unsigned long long P = 13331;
const int mod = 1000000007;
const int maxn = 100010; int head[maxn], Next[maxn * 2], edge[maxn * 2], ver[maxn * 2];
int tot, tote;
int b[maxn * 2], pre[maxn];
int mx, dis[maxn];
bool vis[maxn];
int Stack[maxn], Top; void add(int x, int y, int z) {
ver[++tote] = y;
edge[tote] = z;
Next[tote] = head[x];
head[x] = tote;
}
struct SegementTree {
int ls, rs;
int sum;
unsigned long long hash;
}tr[maxn * 200]; void pushup(int x) {
tr[x].sum = tr[tr[x].ls].sum + tr[tr[x].rs].sum;
unsigned long long tmp1 = tr[tr[x].ls].hash, tmp2 = tr[tr[x].rs].hash;
tr[x].hash = (((tmp1 * P + tmp2) ^ tmp1) * P ^ tmp2) * P;
} void insert(int &now, int l, int r, int pos) {
int p = now;
now = ++tot;
tr[now] = tr[p];
if(l == r) {
tr[now].sum = 1;
tr[now].hash = l + P;
return;
}
int mid = (l + r) >> 1;
if(pos <= mid) insert(tr[now].ls, l, mid, pos);
else insert(tr[now].rs, mid + 1, r, pos);
pushup(now);
} void del(int &now, int l, int r, int ql, int qr) {
if(l >= ql && r <= qr) {
now = 0;
return;
}
int p = now;now = ++tot;
tr[now] = tr[p];
int mid = (l + r) >> 1;
if(ql <= mid) del(tr[now].ls, l, mid, ql, qr);
if(qr > mid) del(tr[now].rs, mid + 1, r, ql, qr);
pushup(now);
} int query(int now, int l, int r, int pos) {
if(l == r) {
if(tr[now].sum == 0) return l;
return -1;
}
int mid = (l + r) >> 1;
if(pos > mid) return query(tr[now].rs, mid + 1, r, pos);
int ans = query(tr[now].ls, l, mid, pos);
if(ans != -1) return ans;
return query(tr[now].rs, mid + 1, r, pos);
} int add(int now, int pos) {
int p = query(now, 0, mx, pos);
if(p > pos) del(now, 0, mx, pos, p - 1);
insert(now, 0, mx, p);
return now;
} int get_sum(int now, int l, int r) {
int mid = (l + r) >> 1;
if(now == 0) return 0;
if(l == r) return b[l];
return (get_sum(tr[now].ls, l, mid) + get_sum(tr[now].rs, mid + 1, r)) % mod;
} bool cmp(int x, int y, int l, int r) {
if(l == r) return tr[x].sum >= tr[y].sum;
int mid = (l + r) >> 1;
if(tr[tr[x].rs].hash != tr[tr[y].rs].hash)
return cmp(tr[x].rs, tr[y].rs, mid + 1, r);
else return cmp(tr[x].ls, tr[y].ls, l, mid);
} struct node {
int x, y;
bool operator < (const node& rhs) const {
return cmp(x, rhs.x, 0, mx);
}
}; priority_queue<node> q; void dijkstra(int s) {
dis[s] = ++tot, q.push((node){dis[s], s});
while(!q.empty()) {
node tmp = q.top();
q.pop();
if(vis[tmp.y]) continue;
vis[tmp.y] = 1;
int x = tmp.y;
for (int i = head[x]; i; i = Next[i]) {
int y = ver[i], z = add(dis[x], edge[i]);
if(!dis[y] || !cmp(z, dis[y], 0, mx)) {
pre[y] = x;
dis[y] = z;
q.push((node){z, y});
}
}
}
} void print(int x, int deep) {
if(x == 0) {
printf("%d\n", deep);
return;
}
print(pre[x], deep + 1);
printf("%d ", x);
}
int main() {
int n, m, x, y, z, s, t;
scanf("%d%d", &n, &m);
for (int i = 1; i <= m; i++) {
scanf("%d%d%d", &x, &y, &z);
add(x, y, z);
add(y, x, z);
mx = max(mx, z);
}
b[0] = 1;
mx += 20;
for (int i = 1; i <= mx; i++) {
b[i] = (b[i - 1] << 1) % mod;
}
scanf("%d%d", &s, &t);
dijkstra(s);
if(dis[t] == 0) printf("-1\n");
else {
printf("%d\n", get_sum(dis[t], 0, mx));
while(t) {
Stack[++Top] = t;
t = pre[t];
}
printf("%d\n", Top);
while(Top) {
printf("%d ", Stack[Top]);
Top--;
}
}
}

  

Codeforces 464E The Classic Problem (最短路 + 主席树 + hash)的更多相关文章

  1. [Codeforces 464E] The Classic Problem(可持久化线段树)

    [Codeforces 464E] The Classic Problem(可持久化线段树) 题面 给出一个带权无向图,每条边的边权是\(2^{x_i}(x_i<10^5)\),求s到t的最短路 ...

  2. Codeforces 464E The Classic Problem(主席树+最短路+哈希,神仙题)

    题目链接 题意:给出一张 \(n\) 个点 \(m\) 条边的无向图,第 \(i\) 条边连接 \(u_i,v_i\),边权为 \(2^{w_i}\),求 \(s\) 到 \(t\) 的最短路. \( ...

  3. CodeForces 464E The Classic Problem | 呆克斯歘 主席树维护高精度

    题意描述 有一个\(n\)点\(m\)边的无向图,第\(i\)条边的边权是\(2^{a_i}\).求点\(s\)到点\(t\)的最短路长度(对\(10^9 + 7\)取模). 题解 思路很简单--用主 ...

  4. Codeforces 464E. The Classic Problem

    题目大意 给定一张$n$个点, $m$条边的无向图,求$S$ 到$T$的最短路,其中边权都是$2^k$的形式$n,m,k<=10^5$,结果对$10^9+7$取模 题解 大佬好厉害 跑一边dij ...

  5. Codeforces 464E #265 (Div. 1) E. The Classic Problem 主席树+Hash

    E. The Classic Problem http://codeforces.com/problemset/problem/464/E 题意:给你一张无向带权图,求S-T的最短路,并输出路径.边权 ...

  6. CF 464E The Classic Problem

    补一补之前听课时候的题. 考虑使用dij算法求最短路,因为边权存不下,所以考虑用主席树维护二进制位,因为每一次都只会在一个位置进行修改,所以可以暴力进位,这样均摊复杂度是对的. <算法导论> ...

  7. codeforces gym #101161E - ACM Tax(lca+主席树)

    题目链接: http://codeforces.com/gym/101161/attachments 题意: 给出节点数为$n$的树 有$q$次询问,输出$a$节点到$b$节点路程中,经过的边的中位数 ...

  8. 【bzoj3218】a+b Problem 最小割+主席树

    数据范围:$n≤5000$,$a,l,r≤10^9$,$b,w,p≤2\times 10^5$. 我们考虑一种暴力的最小割做法: 首先令$sum=\sum\limits_{i=1}^{n} b_i+w ...

  9. HDU 4729 An Easy Problem for Elfness 主席树

    题意: 给出一棵树,每条边有一个容量. 有若干次询问:\(S \, T \, K \, A \, B\),求路径\(S \to T\)的最大流量. 有两种方法可以增大流量: 花费\(A\)可以新修一条 ...

随机推荐

  1. python中set类型总结

    set的创建无非有两种方式: 一 直接使用{}创建新的set并初始化 例如: set1 = {1,2,3,"good news",(1,2,3)} #声明的时候可以包含元组,但不能 ...

  2. 解决:Elipse配置Jython Interpreters时报错Error: Python stdlib source files not found

    今天学习lynnLi的博客monkeyrunner之eclipse中运行monkeyrunner脚本之环境搭建(四)时,遇到了一个问题,即: lynnLi给出的解决办法是:将Python下的Lib拷贝 ...

  3. 配置SSH密码登录

    在客户端生成公钥: ssh-keygen –t rsa 生成的公钥默认位置在~/.ssh/目录 把公钥上传到服务器端: scp id_rsa.pub root@ip地址:文件保存路径 cat id_r ...

  4. android自定义日期组件之双DatePicker

    1.效果图(两个DatePicker放在一起,同时选择起始与结束时间): 2.实现 2.1布局文件: <?xml version="1.0" encoding="u ...

  5. 13-THREE.JS 点光源

    <!DOCTYPE html> <html> <head> <title>Example 03.02 - point Light</title&g ...

  6. JIRA 的安装和使用

    需要的软件 6.0.3-x32.exe jira_6.x_language_zh_CN.jar jira_crack.zip http://pan.baidu.com/s/1dEbpJc1 (从网盘下 ...

  7. linux内嵌汇编语言

    http://blog.chinaunix.net/uid-21254310-id-1828921.html http://www.cnblogs.com/lxgeek/archive/2011/01 ...

  8. Smarty的模板中不允许PHP的代码?

    /****************************************************************************** * Smarty的模板中不允许PHP的代 ...

  9. Linux 链接网络

    目录 查看网卡 存在多个网卡 网卡配置静态IP 报错总结 诚邀访问我的个人博客:我在马路边 更好的阅读体验点击查看原文:Linux链接网络 原创博客,转载请注明出处 @ Linux在安装系统结束后总要 ...

  10. 算法之python创建链表实现cache

    算法之python创建链表实现cache 本节内容 问题由来 解决思路 实现代码 总结 1. 问题由来 问题起因于朋友的一次面试题,面试公司直接给出两道题,要求四十八小时之内做出来,语言不限,做出来之 ...