POJ 3177——Redundant Paths——————【加边形成边双连通图】
Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u
Description
Given a descri_ption of the current set of R (F-1 <= R <= 10,000) paths that each connect exactly two different fields, determine the minimum number of new paths (each of which connects exactly two fields) that must be built so that there are at least two separate routes between any pair of fields. Routes are considered separate if they use none of the same paths, even if they visit the same intermediate field along the way.
There might already be more than one paths between the same pair of fields, and you may also build a new path that connects the same fields as some other path.
Input
Lines 2..R+1: Each line contains two space-separated integers which are the fields at the endpoints of some path.
Output
Sample Input
7 7
1 2
2 3
3 4
2 5
4 5
5 6
5 7
Sample Output
2
Hint
One visualization of the paths is:
1 2 3
+---+---+
| |
| |
6 +---+---+ 4
/ 5
/
/
7 +
Building new paths from 1 to 6 and from 4 to 7 satisfies the conditions.
1 2 3
+---+---+
: | |
: | |
6 +---+---+ 4
/ 5 :
/ :
/ :
7 + - - - -
Check some of the routes:
1 – 2: 1 –> 2 and 1 –> 6 –> 5 –> 2
1 – 4: 1 –> 2 –> 3 –> 4 and 1 –> 6 –> 5 –> 4
3 – 7: 3 –> 4 –> 7 and 3 –> 2 –> 5 –> 7
Every pair of fields is, in fact, connected by two routes.
It's possible that adding some other path will also solve the problem (like one from 6 to 7). Adding two paths, however, is the minimum.
题目大意:有n个草场,m条无向边。问让图形成边双连通图需要最少新建多少条无向边。图中给的有重边。
解题思路:我们可以先画出缩点后的图,这时已经成了一棵树。那么我们可以看出,要想形成边双连通图,需要没有桥,所以,只要将叶子结点连一条边即可。记叶子个数为leaf。所以需要新建的边即为(leaf+1)/2。
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<vector>
#include<stack>
using namespace std;
const int maxn = 5100;
struct Edge{
int from,to,dist,next;
Edge(){}
Edge(int _to,int _next):to(_to),next(_next){}
}edges[maxn*4]; //无向图的边
int head[maxn], tot; //邻接表
int dfs_clock, dfn[maxn]; //时间戳
//Stack:存放边双连通节点、instack:在栈中、ebccno:节点所在分量编号、ebcc_cnt分量数目(从1开始编号)
int Stack[maxn], instack[maxn], top, ebccno[maxn], ebcc_cnt;
int deg[maxn];//记录缩点的度
void init(){
tot = 0;
dfs_clock = 0;
top = 0;
ebcc_cnt = 0;
memset(deg,0,sizeof(deg));
memset(head,-1,sizeof(head));
}
void AddEdge(int _u,int _v){
edges[tot] = Edge(_v,head[_u]);
head[_u] = tot++;
}
int dfs(int u,int fa){ //这里的fa是记录的边的编号,用来处理重边
int lowu = dfn[u] = ++dfs_clock;
Stack[++top] = u; //将每个访问的结点放入栈中
// instack[u] = 1;
for(int i = head[u]; i != -1; i = edges[i].next){
int v = edges[i].to;
if(!dfn[v]){ //如果v没有访问过
int lowv = dfs(v,i); //v及v的后代能访问到的最远祖先
lowu = min(lowu,lowv); //用后代来更新lowu
//如果v已经在栈中了,并且这条边不是回边(一条无向边,拆成了有向边,回指了父亲的这条有向边)
}else if(dfn[v] < dfn[u] && (fa^1) != i){ //有人在这里用instack[v]替代了判断已经在栈中
lowu = min(lowu,dfn[v]); //用反向边更新lowu
}
}
if(dfn[u] == lowu){ //找到一个边双连通分量
ebcc_cnt++;
for(;;){
int v = Stack[top--];
// instack[v] = 0;
ebccno[v] = ebcc_cnt; //把节点划分到分量中
if(u == v){
break;
}
}
}
// low[u] = lowu;
return lowu;
}
void find_ebcc(int n){
memset(dfn,0,sizeof(dfn));
memset(instack,0,sizeof(instack));
for(int i = 1; i <= n; i++){
if(!dfn[i]){
dfs(i,-1);
}
}
}
int main(){
int n,m;
while(scanf("%d%d",&n,&m)!=EOF){
init();
int a,b;
for(int i = 0; i < m; i++){
scanf("%d%d",&a,&b);
AddEdge(a,b);
AddEdge(b,a);
}
find_ebcc(n);
for(int i = 1; i <= n; i++){
for(int j = head[i]; j != -1; j = edges[j].next){
int v = edges[j].to;
if(ebccno[i] != ebccno[v]){
deg[ebccno[v]]++;
}
}
}
int leaf = 0;
for(int i = 1; i <= ebcc_cnt; i++){
if(deg[i] == 1){
leaf++;
}
}
printf("%d\n",(leaf+1)/2);
}
return 0;
}
POJ 3177——Redundant Paths——————【加边形成边双连通图】的更多相关文章
- POJ 3177 Redundant Paths POJ 3352 Road Construction(双连接)
POJ 3177 Redundant Paths POJ 3352 Road Construction 题目链接 题意:两题一样的.一份代码能交.给定一个连通无向图,问加几条边能使得图变成一个双连通图 ...
- tarjan算法求桥双连通分量 POJ 3177 Redundant Paths
POJ 3177 Redundant Paths Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 12598 Accept ...
- POJ 3177 Redundant Paths(边双连通的构造)
Redundant Paths Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13717 Accepted: 5824 ...
- [双连通分量] POJ 3177 Redundant Paths
Redundant Paths Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13712 Accepted: 5821 ...
- poj 3177 Redundant Paths
题目链接:http://poj.org/problem?id=3177 边双连通问题,与点双连通还是有区别的!!! 题意是给你一个图(本来是连通的),问你需要加多少边,使任意两点间,都有两条边不重复的 ...
- POJ 3177 Redundant Paths POJ 3352 Road Construction
这两题是一样的,代码完全一样. 就是给了一个连通图,问加多少条边可以变成边双连通. 去掉桥,其余的连通分支就是边双连通分支了.一个有桥的连通图要变成边双连通图的话,把双连通子图收缩为一个点,形成一颗树 ...
- POJ 3177 Redundant Paths(强连通分量)
题目链接:http://poj.org/problem?id=3177 题目大意是一个无向图给你n个点m条边,让你求出最少加多少条边 可以让任意两个点相通两条及以上的路线(每条路线点可以重复,但是每条 ...
- POJ - 3177 Redundant Paths(边双连通分支)(模板)
1.给定一个连通的无向图G,至少要添加几条边,才能使其变为双连通图. 2. 3. //边双连通分支 /* 去掉桥,其余的连通分支就是边双连通分支了.一个有桥的连通图要变成边双连通图的话, 把双连通子图 ...
- poj 3177 Redundant Paths【求最少添加多少条边可以使图变成双连通图】【缩点后求入度为1的点个数】
Redundant Paths Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 11047 Accepted: 4725 ...
随机推荐
- Xamarin.Forms(一) 学习笔记
Xamarin.Forms是Xamarin跨平台开发app的跨平台的一个Framework,要使用这套Framework,要从XAML说起. XAML是同通过xml的方式来描述控件和动作,可以通过编译 ...
- 使用metasploit进行栈溢出攻击-2
基本的栈溢出搞明白了,真实攻击中一个很重要的问题是shellcode生成. 利用Metasploit提供的工具,可以方便的生成shellcode,然后可以使用第一篇中的代码进行验证. 先说一下如何生成 ...
- Lucene 全文检索 Lucene的使用
Lucene 全文检索 Lucene的使用 一.简介: 参考百度百科: http://baike.baidu.com/link?url=eBcEVuUL3TbUivRvtgRnMr1s44nTE7 ...
- async/await 处理异步
async/ await来发送异步请求,从服务端获取数据,代码很简洁,同时async/await 已经被标准化. 先说一下async的用法,它作为一个关键字放到函数前面,用于表示函数是一个异步函数,因 ...
- zancun
#include<iostream> #include<cstdio> using namespace std; ; int n; int avai[maxn], need[m ...
- kuangbin专题七 HDU1754 I Hate It (单点修改维护最大值)
很多学校流行一种比较的习惯.老师们很喜欢询问,从某某到某某当中,分数最高的是多少. 这让很多学生很反感. 不管你喜不喜欢,现在需要你做的是,就是按照老师的要求,写一个程序,模拟老师的询问.当然,老师有 ...
- clojure with postgres
主要关注访问pg.不关心其他db 1 clojure.java.jdbc https://github.com/clojure/java.jdbc http://clojure-doc.org/art ...
- 关于c语言的位运算&,|,^(看懂汉字的都能看懂)
其中|,&可以当作逻辑运算符,当|,&当成逻辑运算符时,与||,&&的用法基本相似,&&,||运算时会当前面的表达式能够决定整个表达式,则不进行对后面的 ...
- BestCoder Round #66 1001
GTW likes math Accepts: 472 Submissions: 2140 Time Limit: 2000/1000 MS (Java/Others) Memory L ...
- Linux系统lvm管理
pv: 物理卷,被pv命令处理过的物理分区vg:物理卷组 被组装到一起的物理卷pe: 物理扩展 lvm设备的最小存储单元 lvm是pe的整数倍lvm:逻辑卷 ...