Cover

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1027    Accepted Submission(s): 351
Special Judge

Problem Description
You have an n∗n matrix.Every grid has a color.Now there are two types of operating:
L x y: for(int i=1;i<=n;i++)color[i][x]=y;
H x y:for(int i=1;i<=n;i++)color[x][i]=y;
Now give you the initial matrix and the goal matrix.There are m operatings.Put in order to arrange operatings,so that the initial matrix will be the goal matrix after doing these operatings

It's guaranteed that there exists solution.

 
Input
There are multiple test cases,first line has an integer T
For each case:
First line has two integer n,m
Then n lines,every line has n integers,describe the initial matrix
Then n lines,every line has n integers,describe the goal matrix
Then m lines,every line describe an operating

1≤color[i][j]≤n
T=5
1≤n≤100
1≤m≤500

 
Output
For each case,print a line include m integers.The i-th integer x show that the rank of x-th operating is i
 
Sample Input
1
3 5
2 2 1
2 3 3
2 1 3  
3 3 3
3 3 3
3 3 3
H 2 3
L 2 2
H 3 3
H 1 3
L 2 3
 
Sample Output
5 2 4 3 1
 

题目大意:给你一个n*n的矩阵,给你初始矩阵和目标矩阵,然后有m个操作。H x z表示将第x行覆盖为z,L x z表示将第x列覆盖为z,保证是有解。问你这m个操作怎么排,可以让初始矩阵变为目标矩阵。

解题思路:遍历m个操作,如果是行操作,就看该行是否都是所要染的颜色或着是0颜色,如果这一行跟要染的颜色一样,那么就存起来操作,同时把该行全部变为0,。由于不是一次下来就能得到结果,所以用一个变量记录已经有多少个操作已经在结果中,最后逆序输出即为答案。

#include<bits/stdc++.h>
using namespace std;
struct Oper{
int r_,x,col;
}opers[550];
int Map[125][125],ans[550],vis[550];
int main(){
int t,a,n,m;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
scanf("%d",&a);
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
scanf("%d",&Map[i][j]);
}
}
int a,b;
char str[20];
for(int i=1;i<=m;i++){
scanf("%s%d%d",str,&a,&b);
if(str[0]=='H'){
opers[i].r_=1;
opers[i].x=a;
opers[i].col=b;
}else{
opers[i].r_=0;
opers[i].x=a;
opers[i].col=b;
}
}
memset(vis,0,sizeof(vis));
int cnt=0;
while(cnt<m){
for(int i=1;i<=m;i++){
if(!vis[i]){
if(opers[i].r_==1){
int r=opers[i].x,aim=opers[i].col;
int j;
for(j=1;j<=n;j++){
if(Map[r][j]!=aim&&Map[r][j]!=0){
break;
}
}
if(j==n+1){
for(j = 1;j<=n;j++){
Map[r][j]=0;
}
ans[cnt]=i;
cnt++;
vis[i]=1;
}
}else{
int c=opers[i].x,aim=opers[i].col;
int j;
for(j=1;j<=n;j++){
if(Map[j][c]!=aim&&Map[j][c]!=0){
break;
}
}
if(j==n+1){
for(j = 1;j<=n;j++){
Map[j][c]=0;
}
ans[cnt]=i;
cnt++;
vis[i]=1;
}
}
}
}
}
printf("%d",ans[cnt-1]);
for(int i=cnt-2;i>=0;i--){
printf(" %d",ans[i]);
}printf("\n");
}
return 0;
}

  

 

HDU——Cover——————【技巧】的更多相关文章

  1. hdu 5265 技巧题 O(nlogn)求n个数中两数相加取模的最大值

    pog loves szh II Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  2. HDU 4509 湫湫系列故事——减肥记II(线段树-区间覆盖 或者 暴力技巧)

    http://acm.hdu.edu.cn/showproblem.php?pid=4509 题目大意: 中文意义,应该能懂. 解题思路: 因为题目给的时间是一天24小时,而且还有分钟.为了解题方便, ...

  3. HDU 5895 Mathematician QSC(矩阵乘法+循环节降幂+除法取模小技巧+快速幂)

    传送门:HDU 5895 Mathematician QSC 这是一篇很好的题解,我想讲的他基本都讲了http://blog.csdn.net/queuelovestack/article/detai ...

  4. hdu 4864 Task (贪心 技巧)

    题目链接 一道很有技巧的贪心题目. 题意:有n个机器,m个任务.每个机器至多能完成一个任务.对于每个机器,有一个最大运行时间xi和等级yi, 对于每个任务,也有一个运行时间xj和等级yj.只有当xi& ...

  5. HDU 6311 Cover (无向图最小路径覆盖)

    HDU 6311 Cover (无向图最小路径覆盖) Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/ ...

  6. HDU 5884 Sort(二分答案+计算WPL的技巧)

    Sort Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submi ...

  7. hdu 5386 Cover (暴力)

    hdu 5386 Cover Description You have an matrix.Every grid has a color.Now there are two types of oper ...

  8. HDU 6150 - Vertex Cover | 2017 中国大学生程序设计竞赛 - 网络选拔赛

    思路来自 ICPCCamp /* HDU 6150 - Vertex Cover [ 构造 ] | 2017 中国大学生程序设计竞赛 - 网络选拔赛 题意: 给了你一个贪心法找最小覆盖的算法,构造一组 ...

  9. HDU -2674 N!Again(小技巧)

    这道题有个小技巧,就是既然是n!,那么对2009求余,只要大于2009!,那么一定是0,在仔细想想会发现,根本到不了2009,只要到2009的最大质因数就行了,为什么呢?因为最大质因数是最大的一个不能 ...

随机推荐

  1. P1891 疯狂LCM

    \(\color{#0066ff}{ 题目描述 }\) 众所周知,czmppppp是数学大神犇.一天,他给众蒟蒻们出了一道数论题,蒟蒻们都惊呆了... 给定正整数N,求LCM(1,N)+LCM(2,N ...

  2. P1505 [国家集训队]旅游

    \(\color{#0066ff}{题 目 描 述}\) Ray 乐忠于旅游,这次他来到了T 城.T 城是一个水上城市,一共有 N 个景点,有些景点之间会用一座桥连接.为了方便游客到达每个景点但又为了 ...

  3. 树链剖分【洛谷P3833】 [SHOI2012]魔法树

    P3833 [SHOI2012]魔法树 题目描述 Harry Potter 新学了一种魔法:可以让改变树上的果子个数.满心欢喜的他找到了一个巨大的果树,来试验他的新法术. 这棵果树共有N个节点,其中节 ...

  4. 【NOIP 2011】Mayan游戏(搜索+模拟)

    描述 Mayan puzzle是最近流行起来的一个游戏.游戏界面是一个7行5列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即方块必须放在最下面一行,或者放在其他方块之上.**游戏通关是指在规定的步数 ...

  5. Git的安装使用

    1.什么是Git Git是一个自由和开源的分布式版本管理工具,用于有效.高速的处理任何或大或小的项目.最初由Linux Torvalds编写,用于帮助管理Linux内核开发而开发的一个开放源码的版本管 ...

  6. maven 配置jetty 插件

    <plugin> <groupId>org.eclipse.jetty</groupId> <artifactId>jetty-maven-plugin ...

  7. windows_study_2

    描述:如何确定像%ProgramFiles%这样格式的目录的具体位置? 解决:运行——cmd——echo %ProgramFiles%——回车——界面就显示出目录位置了.

  8. 浅谈ORM操作

    2. ORM(对象关系映射) 1. 映射的关系 DB ORM 数据表 <--> 类 数据行 <--> 对象 字段 <--> 属性 2. Django项目使用MySQ ...

  9. find命令使用

    find命令 find [PATH] [option] [action] 参数: 1.与时间相关参数 -atime -ctime -mtime 以mtime为例: -mtime n:n为数字,意义为在 ...

  10. SQL Server 数据导入与导出

    1. BCP 命令 用法: bcp {dbtable | query} {in | out | queryout | format} 数据文件 [-m 最大错误数] [-f 格式化文件] [-e 错误 ...