ISP模块之RAW DATA去噪(一)
ISP(Image Signal Processor),图像信号处理器,主要用来对前端图像传感器输出信号处理的单元,主要用于手机,监控摄像头等设备上。
RAW DATA,可以理解为:RAW图像就是CMOS或者CCD图像感应器将捕捉到的光源信号转化为数字信号的原始数据,是无损的,包含了物体原始的颜色信息等。RAW数据格式一般采用的是Bayer排列方式,通过滤波光片,产生彩色滤波阵列(CFA),鉴于人眼对绿色波段的色彩比较敏感,Bayer数据格式中包含了50%的绿色信息,以及各25%的红色和蓝色信息。
Bayer排列格式有以下4种:
1.| R | G | 2.| B | G | 3.| G | R | 4.| G | B |
| G | B | | G | R | | B | G | | R | G |
在ISP处理模块的第一部分,就是需要对CFA DATA进行去噪操作。普通的去噪方式针对Bayer数据格式是不合适的,需要进行变换后才能进行处理。
一、中值滤波CFA(Color Filter Array)Data去噪方法
首先,让我们一起来回顾一下中值滤波的算法原理以及优缺点,然后给出示意的算法效果图。
中值滤波,顾名思义就是将滤波器里面所有像素值进行排序,然后用中间值替代当前像素点值。常用的中值滤波器有3X3,5X5等。
中值滤波的有点在于,实现简单,能够有效的消除椒盐噪声以及其他脉冲型噪声。缺点也是所有去噪算法所共有的,就是平滑模糊了图像的内容,有些角点以及边缘的信息损失。
对CFA DATA进行去噪时,需要将不同的颜色通道分开进行处理,这样是为了防止在平滑过程中将有用的颜色信息丢掉,比如说,由绿色信息包围的蓝色像素值与其相差很大时,此时就会被认为是噪声被处理掉,然而真实情况是,该区域的蓝色信息都是很大的。所以各通道单独处理的话是有利于保护颜色信息的。在我的处理过程中,是将原CFA DATA分成4块-R,G1,G2,B,分块去噪完成后再重新恢复到原来的位置,这样整个过程就完成了。
下面给出参考的中值滤波和主程序的C++(MFC)代码:
主函数:
- void main()
- {
- /*******开始编写中值滤波去噪模块--2015.07.27***********/
- //针对R分量块进行去噪
- pNewDoc->m_RBlock = new unsigned short [m_Height*m_Width/4];
- pNewDoc->m_G1Block = new unsigned short [m_Height*m_Width/4];
- pNewDoc->m_G2Block = new unsigned short [m_Height*m_Width/4];
- pNewDoc->m_BBlock = new unsigned short [m_Height*m_Width/4];
- unsigned short* smoothR = new unsigned short[m_Height*m_Width/4];
- unsigned short* smoothG1 = new unsigned short[m_Height*m_Width/4];
- unsigned short* smoothG2 = new unsigned short[m_Height*m_Width/4];
- unsigned short* smoothB = new unsigned short[m_Height*m_Width/4];
- for (int i = 0; i < m_Height/2 ;i ++ )
- {
- for(int j = 0; j < m_Width/2 ; j ++ )
- {
- pNewDoc->m_RBlock [i*m_Width/2 + j] = m_RawImage[i*m_Width*2 + j*2];
- pNewDoc->m_G1Block[i*m_Width/2 + j] = m_RawImage[i*m_Width*2 + j*2 + 1];
- pNewDoc->m_G2Block[i*m_Width/2 + j] = m_RawImage[i*m_Width*2 + m_Width + j*2];
- pNewDoc->m_BBlock [i*m_Width/2 + j] = m_RawImage[i*m_Width*2 + m_Width + j*2 + 1];
- }
- }
- medianFilter(pNewDoc->m_RBlock,smoothR,m_Width/2,m_Height/2); //针对R分量块进行去噪
- medianFilter(pNewDoc->m_G1Block,smoothG1,m_Width/2,m_Height/2); //针对G1分量块进行去噪
- medianFilter(pNewDoc->m_G2Block,smoothG2,m_Width/2,m_Height/2); //针对G2分量块进行去噪
- medianFilter(pNewDoc->m_BBlock,smoothB,m_Width/2,m_Height/2); //针对B分量块进行去噪
- //反过来构造去噪去噪后的raw data
- for (int i = 0; i < m_Height/2 - 1;i ++ )
- {
- for(int j = 0; j < m_Width/2-1; j ++ )
- {
- pNewDoc->m_ImageNR[i*m_Width*2 + j*2] = smoothR[i*m_Width/2 + j];
- pNewDoc->m_ImageNR[i*m_Width*2 + j*2 + 1] = smoothG1[i*m_Width/2 + j];
- pNewDoc->m_ImageNR[i*m_Width*2 + m_Width + j*2] = smoothG2[i*m_Width/2 + j];
- pNewDoc->m_ImageNR[i*m_Width*2 + m_Width + j*2 + 1] = smoothB[i*m_Width/2 + j];
- }
- }
- /***********中值滤波模块完成--2015.07.27********************/
- //SaveImageData(pNewDoc->m_ImageNR, m_Height ,m_Width,"E:\\m_ImageNR.bmp");
- SetDisplayRawImage( pNewDoc->m_ImageNR, m_Height ,m_Width, m_RawBitType,pNewDoc->m_Image);
- }
void main()
{ /*******开始编写中值滤波去噪模块--2015.07.27***********/
//针对R分量块进行去噪
pNewDoc->m_RBlock = new unsigned short [m_Height*m_Width/4];
pNewDoc->m_G1Block = new unsigned short [m_Height*m_Width/4];
pNewDoc->m_G2Block = new unsigned short [m_Height*m_Width/4];
pNewDoc->m_BBlock = new unsigned short [m_Height*m_Width/4]; unsigned short* smoothR = new unsigned short[m_Height*m_Width/4];
unsigned short* smoothG1 = new unsigned short[m_Height*m_Width/4];
unsigned short* smoothG2 = new unsigned short[m_Height*m_Width/4];
unsigned short* smoothB = new unsigned short[m_Height*m_Width/4];
for (int i = 0; i < m_Height/2 ;i ++ )
{
for(int j = 0; j < m_Width/2 ; j ++ )
{
pNewDoc->m_RBlock [i*m_Width/2 + j] = m_RawImage[i*m_Width*2 + j*2];
pNewDoc->m_G1Block[i*m_Width/2 + j] = m_RawImage[i*m_Width*2 + j*2 + 1];
pNewDoc->m_G2Block[i*m_Width/2 + j] = m_RawImage[i*m_Width*2 + m_Width + j*2];
pNewDoc->m_BBlock [i*m_Width/2 + j] = m_RawImage[i*m_Width*2 + m_Width + j*2 + 1];
}
}
medianFilter(pNewDoc->m_RBlock,smoothR,m_Width/2,m_Height/2); //针对R分量块进行去噪
medianFilter(pNewDoc->m_G1Block,smoothG1,m_Width/2,m_Height/2); //针对G1分量块进行去噪
medianFilter(pNewDoc->m_G2Block,smoothG2,m_Width/2,m_Height/2); //针对G2分量块进行去噪
medianFilter(pNewDoc->m_BBlock,smoothB,m_Width/2,m_Height/2); //针对B分量块进行去噪 //反过来构造去噪去噪后的raw data
for (int i = 0; i < m_Height/2 - 1;i ++ )
{
for(int j = 0; j < m_Width/2-1; j ++ )
{
pNewDoc->m_ImageNR[i*m_Width*2 + j*2] = smoothR[i*m_Width/2 + j];
pNewDoc->m_ImageNR[i*m_Width*2 + j*2 + 1] = smoothG1[i*m_Width/2 + j];
pNewDoc->m_ImageNR[i*m_Width*2 + m_Width + j*2] = smoothG2[i*m_Width/2 + j];
pNewDoc->m_ImageNR[i*m_Width*2 + m_Width + j*2 + 1] = smoothB[i*m_Width/2 + j]; }
}
/***********中值滤波模块完成--2015.07.27********************/
//SaveImageData(pNewDoc->m_ImageNR, m_Height ,m_Width,"E:\\m_ImageNR.bmp");
SetDisplayRawImage( pNewDoc->m_ImageNR, m_Height ,m_Width, m_RawBitType,pNewDoc->m_Image);
}
- <pre name="code" class="html">void medianFilter (unsigned short* corrupted, unsigned short* smooth, int width, int height)
- {
- memcpy ( smooth, corrupted, width*height*sizeof(unsigned short) );
- for (int j=1;j<height-1;j++)
- {
- for (int i=1;i<width-1;i++)
- {
- int k = 0;
- unsigned short window[9];
- for (int jj = j - 1; jj < j + 2; ++jj)
- for (int ii = i - 1; ii < i + 2; ++ii)
- window[k++] = corrupted[jj * width + ii];
- // Order elements (only half of them)
- for (int m = 0; m < 5; ++m)
- {
- int min = m;
- for (int n = m + 1; n < 9; ++n)
- if (window[n] < window[min])
- min = n;
- // Put found minimum element in its place
- unsigned short temp = window[m];
- window[m] = window[min];
- window[min] = temp;
- }
- smooth[ j*width+i ] = window[4];
- }
- }
- } <span style="font-family: Arial, Helvetica, sans-serif;"> </span>
<pre name="code" class="html">void medianFilter (unsigned short* corrupted, unsigned short* smooth, int width, int height)
{ memcpy ( smooth, corrupted, width*height*sizeof(unsigned short) );
for (int j=1;j<height-1;j++)
{
for (int i=1;i<width-1;i++)
{
int k = 0;
unsigned short window[9];
for (int jj = j - 1; jj < j + 2; ++jj)
for (int ii = i - 1; ii < i + 2; ++ii)
window[k++] = corrupted[jj * width + ii];
// Order elements (only half of them)
for (int m = 0; m < 5; ++m)
{
int min = m;
for (int n = m + 1; n < 9; ++n)
if (window[n] < window[min])
min = n;
// Put found minimum element in its place
unsigned short temp = window[m];
window[m] = window[min];
window[min] = temp;
}
smooth[ j*width+i ] = window[4];
}
}
} <span style="font-family: Arial, Helvetica, sans-serif;"> </span>
中值滤波函数是在网上找的代码,由于比较基础,就直接拿过来用了,侵删
去噪前后效果图:
下一篇文章,我将主要给大家展示一下BM3D算法RAW DATA去噪效果,谢谢。
ISP模块之RAW DATA去噪(一)的更多相关文章
- ISP模块之RAW DATA去噪(二)--BM3D算法
在正式开始本篇文章之前,让我们一起回顾一下CFA图像去噪的一些基本思路与方法.接着我会详细地和大家分享自己学习理解的BM3D算法,操作过程,它的优缺点,最后会给出算法效果图供参考. 在ISP模块里,研 ...
- Sensor信号输出YUV、RGB、RAW DATA、JPEG【转】
本文转载自:http://blog.csdn.net/southcamel/article/details/8305873 简单来说,YUV: luma (Y) + chroma (UV) 格式, 一 ...
- Sensor信号输出YUV、RGB、RAW DATA、JPEG 4种方式区别
简单来说,YUV: luma (Y) + chroma (UV) 格式, 一般情况下sensor支持YUV422格式,即数据格式是按Y-U-Y-V次序输出的RGB: 传统的红绿蓝格式,比如RGB565 ...
- 嵌入式开发之davinci--- 8148/8168/8127 中的图像采集格式Sensor信号输出YUV、RGB、RAW DATA、JPEG 4种方式区别
简单来说,YUV: luma (Y) + chroma (UV) 格式, 一般情况下sensor支持YUV422格式,即数据格式是按Y-U-Y-V次序输出的RGB: 传统的红绿蓝格式,比如RGB565 ...
- IPC网络高清摄像机基础知识4(Sensor信号输出YUV、RGB、RAW DATA、JPEG 4种方式区别) 【转】
转自:http://blog.csdn.net/times_poem/article/details/51682785 [-] 一 概念介绍 二 两个疑问 三 RAW和JPEG的区别 1 概念说明 3 ...
- 17.1.1.6 Creating a Data Snapshot Using Raw Data Files 创建一个数据快照使用 Raw Data Files
17.1.1.6 Creating a Data Snapshot Using Raw Data Files 创建一个数据快照使用 Raw Data Files 如果数据库是大的, 复制raw 数据文 ...
- Using the FutureRequestExecutionService Based on classic (blocking) I/O handle a great number of concurrent connections is more important than performance in terms of a raw data throughput
Chapter 7. Advanced topics http://hc.apache.org/httpcomponents-client-ga/tutorial/html/advanced.html ...
- perl模块 Compress::Raw::Lzma 的安装
perl模块 Compress::Raw::Lzma 的安装 用 cpan 安装任意perl模块总是提示 Couldn't untar Compress-Raw-Lzma-2.070.tar: 'Ca ...
- DICOM设备Raw Data与重建
DICOM设备Raw Data与重建 现在的医疗影像设备基本都已DICOM为标准.但现在许多医院的技术人员都以为只要支持DICOM就一切OK,其实不然.DICOM中有Storage.Prin ...
随机推荐
- 利用反射修改final数据域
当final修饰一个数据域时,意义是声明该数据域是最终的,不可修改的.常见的使用场景就是eclipse自动生成的serialVersionUID一般都是final的. 另外还可以构造线程安全(thre ...
- ubuntu服务器环境配置参考
一.基本的Linux系统命令: ls 查看当前目录下的文件及文件夹 cd /var/www/html 转换目录到/var/www/html cd abc/ddd/ 转换目录到当前目录下的abc文件夹下 ...
- spring的applicationContext.xml如何自动加载
一个web工程自动加载的配置文件只有web.xml,想要加载其他.xml必须在web.xml里面进行配置. 用spring的时候需要一个bean容器来管理所有的bean,所有bean默认是写在appl ...
- linux精彩收集
----------------------------网络无关篇-------------------------- 0001 修改主机名(bjchenxu) vi /etc/sysconfig/n ...
- 51nod 1273 旅行计划——思维题
某个国家有N个城市,编号0 至 N-1,他们之间用N - 1条道路连接,道路是双向行驶的,沿着道路你可以到达任何一个城市.你有一个旅行计划,这个计划是从编号K的城市出发,每天到达一个你没有去过的城市, ...
- Centos 7 ssh登录速度慢
在server上/etc/hosts文件中把你本机的ip和hostname加入 hostname ifconifg 在server上/etc/ssh/sshd_config文件中修改或加入UseDNS ...
- 《Linux命令、编辑器与shell编程》第三版 学习笔记---001
Linux概述 1.具有内核编程接口 2.支持多用户(同时) 3.支持多任务 4.支持安全的分层文件系统 a.标准 b.链接 c.权限 5.shell(命令解释器和编程语言) a.文件名生成(通配符和 ...
- 将log4j2的配置文件log4j2.xml拆分成多个xml文件
在日常的项目开发中,我们可能会使用log4j2分离系统日志与业务日志 ,这样一来,log4j2.xml 这个配置文件可能就会变得非常臃肿.庞大,那么我们可以将这个文件拆分成多个配置文件吗? 答案是肯定 ...
- mysql打开文件数太多的解决办法
http://www.orczhou.com/index.php/2010/10/mysql-open-file-limit/ http://www.cnblogs.com/end/archive/2 ...
- Netty源码学习(一)Netty线程模型
给你一台4路E7-4820V2(32核心64线程),512G内存的服务器,你该如何编程才能支持百万长连接? 最直接的想法是采用BIO的模式,为每个连接新建一个线程,在一一对应的线程中直接处理连接上的数 ...