ISP模块之RAW DATA去噪(一)
ISP(Image Signal Processor),图像信号处理器,主要用来对前端图像传感器输出信号处理的单元,主要用于手机,监控摄像头等设备上。
RAW DATA,可以理解为:RAW图像就是CMOS或者CCD图像感应器将捕捉到的光源信号转化为数字信号的原始数据,是无损的,包含了物体原始的颜色信息等。RAW数据格式一般采用的是Bayer排列方式,通过滤波光片,产生彩色滤波阵列(CFA),鉴于人眼对绿色波段的色彩比较敏感,Bayer数据格式中包含了50%的绿色信息,以及各25%的红色和蓝色信息。
Bayer排列格式有以下4种:
1.| R | G | 2.| B | G | 3.| G | R | 4.| G | B |
| G | B | | G | R | | B | G | | R | G |
在ISP处理模块的第一部分,就是需要对CFA DATA进行去噪操作。普通的去噪方式针对Bayer数据格式是不合适的,需要进行变换后才能进行处理。
一、中值滤波CFA(Color Filter Array)Data去噪方法
首先,让我们一起来回顾一下中值滤波的算法原理以及优缺点,然后给出示意的算法效果图。
中值滤波,顾名思义就是将滤波器里面所有像素值进行排序,然后用中间值替代当前像素点值。常用的中值滤波器有3X3,5X5等。
中值滤波的有点在于,实现简单,能够有效的消除椒盐噪声以及其他脉冲型噪声。缺点也是所有去噪算法所共有的,就是平滑模糊了图像的内容,有些角点以及边缘的信息损失。
对CFA DATA进行去噪时,需要将不同的颜色通道分开进行处理,这样是为了防止在平滑过程中将有用的颜色信息丢掉,比如说,由绿色信息包围的蓝色像素值与其相差很大时,此时就会被认为是噪声被处理掉,然而真实情况是,该区域的蓝色信息都是很大的。所以各通道单独处理的话是有利于保护颜色信息的。在我的处理过程中,是将原CFA DATA分成4块-R,G1,G2,B,分块去噪完成后再重新恢复到原来的位置,这样整个过程就完成了。
下面给出参考的中值滤波和主程序的C++(MFC)代码:
主函数:
- void main()
- {
- /*******开始编写中值滤波去噪模块--2015.07.27***********/
- //针对R分量块进行去噪
- pNewDoc->m_RBlock = new unsigned short [m_Height*m_Width/4];
- pNewDoc->m_G1Block = new unsigned short [m_Height*m_Width/4];
- pNewDoc->m_G2Block = new unsigned short [m_Height*m_Width/4];
- pNewDoc->m_BBlock = new unsigned short [m_Height*m_Width/4];
- unsigned short* smoothR = new unsigned short[m_Height*m_Width/4];
- unsigned short* smoothG1 = new unsigned short[m_Height*m_Width/4];
- unsigned short* smoothG2 = new unsigned short[m_Height*m_Width/4];
- unsigned short* smoothB = new unsigned short[m_Height*m_Width/4];
- for (int i = 0; i < m_Height/2 ;i ++ )
- {
- for(int j = 0; j < m_Width/2 ; j ++ )
- {
- pNewDoc->m_RBlock [i*m_Width/2 + j] = m_RawImage[i*m_Width*2 + j*2];
- pNewDoc->m_G1Block[i*m_Width/2 + j] = m_RawImage[i*m_Width*2 + j*2 + 1];
- pNewDoc->m_G2Block[i*m_Width/2 + j] = m_RawImage[i*m_Width*2 + m_Width + j*2];
- pNewDoc->m_BBlock [i*m_Width/2 + j] = m_RawImage[i*m_Width*2 + m_Width + j*2 + 1];
- }
- }
- medianFilter(pNewDoc->m_RBlock,smoothR,m_Width/2,m_Height/2); //针对R分量块进行去噪
- medianFilter(pNewDoc->m_G1Block,smoothG1,m_Width/2,m_Height/2); //针对G1分量块进行去噪
- medianFilter(pNewDoc->m_G2Block,smoothG2,m_Width/2,m_Height/2); //针对G2分量块进行去噪
- medianFilter(pNewDoc->m_BBlock,smoothB,m_Width/2,m_Height/2); //针对B分量块进行去噪
- //反过来构造去噪去噪后的raw data
- for (int i = 0; i < m_Height/2 - 1;i ++ )
- {
- for(int j = 0; j < m_Width/2-1; j ++ )
- {
- pNewDoc->m_ImageNR[i*m_Width*2 + j*2] = smoothR[i*m_Width/2 + j];
- pNewDoc->m_ImageNR[i*m_Width*2 + j*2 + 1] = smoothG1[i*m_Width/2 + j];
- pNewDoc->m_ImageNR[i*m_Width*2 + m_Width + j*2] = smoothG2[i*m_Width/2 + j];
- pNewDoc->m_ImageNR[i*m_Width*2 + m_Width + j*2 + 1] = smoothB[i*m_Width/2 + j];
- }
- }
- /***********中值滤波模块完成--2015.07.27********************/
- //SaveImageData(pNewDoc->m_ImageNR, m_Height ,m_Width,"E:\\m_ImageNR.bmp");
- SetDisplayRawImage( pNewDoc->m_ImageNR, m_Height ,m_Width, m_RawBitType,pNewDoc->m_Image);
- }
void main()
{ /*******开始编写中值滤波去噪模块--2015.07.27***********/
//针对R分量块进行去噪
pNewDoc->m_RBlock = new unsigned short [m_Height*m_Width/4];
pNewDoc->m_G1Block = new unsigned short [m_Height*m_Width/4];
pNewDoc->m_G2Block = new unsigned short [m_Height*m_Width/4];
pNewDoc->m_BBlock = new unsigned short [m_Height*m_Width/4]; unsigned short* smoothR = new unsigned short[m_Height*m_Width/4];
unsigned short* smoothG1 = new unsigned short[m_Height*m_Width/4];
unsigned short* smoothG2 = new unsigned short[m_Height*m_Width/4];
unsigned short* smoothB = new unsigned short[m_Height*m_Width/4];
for (int i = 0; i < m_Height/2 ;i ++ )
{
for(int j = 0; j < m_Width/2 ; j ++ )
{
pNewDoc->m_RBlock [i*m_Width/2 + j] = m_RawImage[i*m_Width*2 + j*2];
pNewDoc->m_G1Block[i*m_Width/2 + j] = m_RawImage[i*m_Width*2 + j*2 + 1];
pNewDoc->m_G2Block[i*m_Width/2 + j] = m_RawImage[i*m_Width*2 + m_Width + j*2];
pNewDoc->m_BBlock [i*m_Width/2 + j] = m_RawImage[i*m_Width*2 + m_Width + j*2 + 1];
}
}
medianFilter(pNewDoc->m_RBlock,smoothR,m_Width/2,m_Height/2); //针对R分量块进行去噪
medianFilter(pNewDoc->m_G1Block,smoothG1,m_Width/2,m_Height/2); //针对G1分量块进行去噪
medianFilter(pNewDoc->m_G2Block,smoothG2,m_Width/2,m_Height/2); //针对G2分量块进行去噪
medianFilter(pNewDoc->m_BBlock,smoothB,m_Width/2,m_Height/2); //针对B分量块进行去噪 //反过来构造去噪去噪后的raw data
for (int i = 0; i < m_Height/2 - 1;i ++ )
{
for(int j = 0; j < m_Width/2-1; j ++ )
{
pNewDoc->m_ImageNR[i*m_Width*2 + j*2] = smoothR[i*m_Width/2 + j];
pNewDoc->m_ImageNR[i*m_Width*2 + j*2 + 1] = smoothG1[i*m_Width/2 + j];
pNewDoc->m_ImageNR[i*m_Width*2 + m_Width + j*2] = smoothG2[i*m_Width/2 + j];
pNewDoc->m_ImageNR[i*m_Width*2 + m_Width + j*2 + 1] = smoothB[i*m_Width/2 + j]; }
}
/***********中值滤波模块完成--2015.07.27********************/
//SaveImageData(pNewDoc->m_ImageNR, m_Height ,m_Width,"E:\\m_ImageNR.bmp");
SetDisplayRawImage( pNewDoc->m_ImageNR, m_Height ,m_Width, m_RawBitType,pNewDoc->m_Image);
}
- <pre name="code" class="html">void medianFilter (unsigned short* corrupted, unsigned short* smooth, int width, int height)
- {
- memcpy ( smooth, corrupted, width*height*sizeof(unsigned short) );
- for (int j=1;j<height-1;j++)
- {
- for (int i=1;i<width-1;i++)
- {
- int k = 0;
- unsigned short window[9];
- for (int jj = j - 1; jj < j + 2; ++jj)
- for (int ii = i - 1; ii < i + 2; ++ii)
- window[k++] = corrupted[jj * width + ii];
- // Order elements (only half of them)
- for (int m = 0; m < 5; ++m)
- {
- int min = m;
- for (int n = m + 1; n < 9; ++n)
- if (window[n] < window[min])
- min = n;
- // Put found minimum element in its place
- unsigned short temp = window[m];
- window[m] = window[min];
- window[min] = temp;
- }
- smooth[ j*width+i ] = window[4];
- }
- }
- } <span style="font-family: Arial, Helvetica, sans-serif;"> </span>
<pre name="code" class="html">void medianFilter (unsigned short* corrupted, unsigned short* smooth, int width, int height)
{ memcpy ( smooth, corrupted, width*height*sizeof(unsigned short) );
for (int j=1;j<height-1;j++)
{
for (int i=1;i<width-1;i++)
{
int k = 0;
unsigned short window[9];
for (int jj = j - 1; jj < j + 2; ++jj)
for (int ii = i - 1; ii < i + 2; ++ii)
window[k++] = corrupted[jj * width + ii];
// Order elements (only half of them)
for (int m = 0; m < 5; ++m)
{
int min = m;
for (int n = m + 1; n < 9; ++n)
if (window[n] < window[min])
min = n;
// Put found minimum element in its place
unsigned short temp = window[m];
window[m] = window[min];
window[min] = temp;
}
smooth[ j*width+i ] = window[4];
}
}
} <span style="font-family: Arial, Helvetica, sans-serif;"> </span>
中值滤波函数是在网上找的代码,由于比较基础,就直接拿过来用了,侵删
去噪前后效果图:
下一篇文章,我将主要给大家展示一下BM3D算法RAW DATA去噪效果,谢谢。
ISP模块之RAW DATA去噪(一)的更多相关文章
- ISP模块之RAW DATA去噪(二)--BM3D算法
在正式开始本篇文章之前,让我们一起回顾一下CFA图像去噪的一些基本思路与方法.接着我会详细地和大家分享自己学习理解的BM3D算法,操作过程,它的优缺点,最后会给出算法效果图供参考. 在ISP模块里,研 ...
- Sensor信号输出YUV、RGB、RAW DATA、JPEG【转】
本文转载自:http://blog.csdn.net/southcamel/article/details/8305873 简单来说,YUV: luma (Y) + chroma (UV) 格式, 一 ...
- Sensor信号输出YUV、RGB、RAW DATA、JPEG 4种方式区别
简单来说,YUV: luma (Y) + chroma (UV) 格式, 一般情况下sensor支持YUV422格式,即数据格式是按Y-U-Y-V次序输出的RGB: 传统的红绿蓝格式,比如RGB565 ...
- 嵌入式开发之davinci--- 8148/8168/8127 中的图像采集格式Sensor信号输出YUV、RGB、RAW DATA、JPEG 4种方式区别
简单来说,YUV: luma (Y) + chroma (UV) 格式, 一般情况下sensor支持YUV422格式,即数据格式是按Y-U-Y-V次序输出的RGB: 传统的红绿蓝格式,比如RGB565 ...
- IPC网络高清摄像机基础知识4(Sensor信号输出YUV、RGB、RAW DATA、JPEG 4种方式区别) 【转】
转自:http://blog.csdn.net/times_poem/article/details/51682785 [-] 一 概念介绍 二 两个疑问 三 RAW和JPEG的区别 1 概念说明 3 ...
- 17.1.1.6 Creating a Data Snapshot Using Raw Data Files 创建一个数据快照使用 Raw Data Files
17.1.1.6 Creating a Data Snapshot Using Raw Data Files 创建一个数据快照使用 Raw Data Files 如果数据库是大的, 复制raw 数据文 ...
- Using the FutureRequestExecutionService Based on classic (blocking) I/O handle a great number of concurrent connections is more important than performance in terms of a raw data throughput
Chapter 7. Advanced topics http://hc.apache.org/httpcomponents-client-ga/tutorial/html/advanced.html ...
- perl模块 Compress::Raw::Lzma 的安装
perl模块 Compress::Raw::Lzma 的安装 用 cpan 安装任意perl模块总是提示 Couldn't untar Compress-Raw-Lzma-2.070.tar: 'Ca ...
- DICOM设备Raw Data与重建
DICOM设备Raw Data与重建 现在的医疗影像设备基本都已DICOM为标准.但现在许多医院的技术人员都以为只要支持DICOM就一切OK,其实不然.DICOM中有Storage.Prin ...
随机推荐
- LeetCode -- Implement Stacks using Queue
Question: Implement the following operations of a queue using stacks. push(x) -- Push element x to t ...
- BZOJ 4326 NOIP2015 运输计划(树上差分+LCA+二分答案)
4326: NOIP2015 运输计划 Time Limit: 30 Sec Memory Limit: 128 MB Submit: 1388 Solved: 860 [Submit][Stat ...
- BZOJ1483 [HNOI2009]梦幻布丁 【链表 + 启发式合并】
题目 N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色. 例如颜色分别为1,2,2,1的四个布丁一共有3段颜色. 输入格式 第一行给出N,M表示 ...
- Codeforces Round #324 (Div. 2) A
A. Olesya and Rodion time limit per test 1 second memory limit per test 256 megabytes input standard ...
- code forces 979C
C. Kuro and Walking Route time limit per test 2 seconds memory limit per test 256 megabytes input st ...
- Reversion windows 2008 R2 STD to Datacenter
1.To determine the installed edition, run: DISM /online /Get-CurrentEdition 2.To check the possible ...
- freemarker 前端 判读 遍历 取值
<#if content?length gt 100> ${content[0..100]}... <#else> ${content} </#if> freema ...
- github 小白教程
工作整天在忙,也没好好有整块的时间去学学东西,记录一下github的学习过程,以便日后好回顾,我一直坚信只有被大家分享的知识,才是好知识. github是什么?一定有人会有这样的疑问.那么如果说到gi ...
- iframe操作(跨域解决等)
note:当页面内嵌入一个iframe实际上是在dom上新建了一个新的完整的window对象 iframe中取得主窗体 window.top (顶级窗口的window对象) window.parent ...
- 神奇的幻方(NOIP2015)(真·纯模拟)
原题传送门 这是道SB模拟题,NOIP--难度 直接贴代码 #include<iostream> #include<cstdio> using namespace std; , ...