51nod1119(除法取模/费马小定理求组合数)
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1119
题意:中文题诶~
思路:这题数据比较大直接暴力肯定是不行咯,通过一部分打表我们不难发现这个矩阵就是由两个杨辉三角构成的,那么求f(n, m)就是求组合数c(m+n-2, m-1)%mod,其中n>=m;
我们令m+n-2=n, m-1=m, 即我们要求c(n, m)=n!/((n-m)!*m!)%mod,为了书写方便,我们再令:a=n!/(n-m)!, b=m!;
那么我们现在要求的就是:(a/b)%mod,除法取模并不能直接计算,我们需要将之转化为乘法取摸运算;
接下来我们可以有两种解法:
解法1:(a/b)%mod=(a*b')%mod,其中b'为b%mod的乘法逆元,求乘法逆元我们直接用exgcd就好了;不过这里还有一个问题需要注意:
a, b两个数本身就已经超过long long了,所以我们不能先直接计算出a, b的值再求逆元;那么我们是否可以在计算a, b的过程中给其取摸呢?
即:((a%mod)/(b%mod))%mod=?((a%mod)*b')%mod, 答案是可以的, 因为:b=1(%mod), 那么有 b%mod=1(%mod), 显然,先给b取摸再求逆是可行的。 所以我们最终要求的就是:((a%mod)*b')%mod;
代码:
#include <bits/stdc++.h>
#define ll long long
using namespace std; const ll mod=1e9+; void exgcd(ll a, ll b, ll&x, ll&y){
if(!b){
y=, x=;
return;
}
exgcd(b, a%b, y, x);
y-=a/b*x;
} int main(void){
ll n, m, a=, b=, x, y;
cin >> n >> m;
if(n<m){
swap(n, m);
}
n=n+m-, m-=;
for(ll i=n,j=; j<m; j++,i--){
a=i*a%mod;
}
for(ll i=; i<=m; i++){
b=b*i%mod;
}
exgcd(b, mod, x, y);
x=(x%mod+mod)%mod;
cout << a*x%mod << endl;
return ;
}
解法2:
我们先引入费马小定理:对于互质的两个数b, mod, 有:b^(mod-1)=1(%mod)-----1式;
本题要求 x=(a/b)%mod, 即: a/b=x(%mod)-----2式;
联立1,2式,有:a/b*b^(mod-1)=x(%mod), 即:a*b^(mod-2)=x(%mod), 所以:x=a*b^(mod-2) % mod, 我们可以用快速幂求解;
关于上式证明:
1式等价于:b^(mod-1)%mod=1; 即: b^(mod-1)=k*mod+1;
2式等价于:(a/b)%mod=x; 即: a/b=k'*mod+x;
所以有:a/b*b^(mod-1)=k*k'*mod^2+k'*mod+x*k*mod+x;
所以:a/b*b^(mod-1)%mod=x;
所以:a/b*b^(mod-1)=x(%mod), 即原式得证;
代码:
#include <bits/stdc++.h>
#define ll long long
using namespace std; const ll mod=1e9+; ll get_pow(ll x, ll n){
ll ans=;
while(n){
if(n&){
ans=ans*x%mod;
}
x=x*x%mod;
n>>=;
}
return (ans+mod)%mod;
} int main(void){
ll n, m, a=, b=, x, y;
cin >> n >> m;
if(n<m){
swap(n, m);
}
n=n+m-, m-=;
for(ll i=n,j=; j<m; j++,i--){
a=i*a%mod;
}
for(ll i=; i<=m; i++){
b=b*i%mod;
}
cout << a*get_pow(b, mod-)%mod << endl;
return ;
}
51nod1119(除法取模/费马小定理求组合数)的更多相关文章
- 题解 P4071 【[SDOI2016]排列计数】 (费马小定理求组合数 + 错排问题)
luogu题目传送门! luogu博客通道! 这题要用到错排,先理解一下什么是错排: 问题:有一个数集A,里面有n个元素 a[i].求,如果将其打乱,有多少种方法使得所有第原来的i个数a[i]不在原来 ...
- 【Gym 100947E】Qwerty78 Trip(组合数取模/费马小定理)
从(1,1)到(n,m),每次向右或向下走一步,,不能经过(x,y),求走的方案数取模.可以经过(x,y)则相当于m+n步里面选n步必须向下走,方案数为 C((m−1)+(n−1),n−1) 再考虑其 ...
- 数学【p2613】 【模板】有理数取余(费马小定理)
题目描述 给出一个有理数 c=a/b ,求 c mod 19260817的值. 说明 对于所有数据, 0≤a,b≤10^10001 分析: 一看题 这么短 哇简单!况且19260817还是个素数!(美 ...
- hdu 3037 费马小定理+逆元除法取模+Lucas定理
组合数学推推推最后,推得要求C(n+m,m)%p 其中n,m小于10^9,p小于1^5 用Lucas定理求(Lucas定理求nm较大时的组合数) 因为p数据较小可以直接阶乘打表求逆元 求逆元时,由费马 ...
- HDU4675【GCD of scequence】【组合数学、费马小定理、取模】
看题解一开始还有地方不理解,果然是我的组合数学思维比较差 然后理解了之后自己敲了一个果断TLE.... 我以后果然还得多练啊 好巧妙的思路啊 知识1: 对于除法取模还需要用到费马小定理: a ^ (p ...
- HDU4704Sum 费马小定理+大数取模
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4704 题目大意: 看似复杂,其实就是求整数n的划分数,4=1+1+2和4=1+2+1是不同的.因而可 ...
- 牛客Wannafly挑战赛13-BJxc军训-费马小定理、分式取模、快速幂
参考:https://blog.csdn.net/qq_40513946/article/details/79839320 传送门:https://www.nowcoder.com/acm/conte ...
- hdu 4704 Sum【组合数学/费马小定理/大数取模】By cellur925
首先,我们珂以抽象出S函数的模型:把n拆成k个正整数,有多少种方案? 答案是C(n-1,k-1). 然后发现我们要求的是一段连续的函数值,仔细思考,并根据组合数的性质,我们珂以发现实际上答案就是在让求 ...
- 【费马小定理+快速幂取模】ACM-ICPC 2018 焦作赛区网络预赛 G. Give Candies
G. Give Candies There are N children in kindergarten. Miss Li bought them N candies. To make the pro ...
随机推荐
- 分享知识-快乐自己:java代码 操作 solr
POM 文件: <!-- solr客户端 --> <dependency> <groupId>org.apache.solr</groupId> < ...
- node.js+express验证码的实现
安装ccap库 npm install ccap var ccap = require(); var captcha = ccap({ width:190, height:50, offset:30, ...
- JS常用工具类代码
http://www.cnblogs.com/liszt/archive/2011/08/16/2140007.html js/javascript删除字符串中的html标签 function rem ...
- io.js的六大新特性
io.js是nodejs的友好版的分支("friendly fork”).它支持npm中所有的同样模块,且使用了v8最新版本的截取(v8是被node.js使用js解释器),且修复了很多的bu ...
- leetcode 162 Find Peak Element(二分法)
A peak element is an element that is greater than its neighbors. Given an input array where num[i] ≠ ...
- 批量处理JDBC语句提高处理速度
当需要成批插入或者更新记录时.可以采用Java的批量更新机制,这一机制允许多条语句一次性提交给数据库批量处理.通常情况下比单独提交处理更有效率 JDBC的批量处理语句包括下面两个方法: – ...
- Android的各国语言的缩写
语言包在android工程中的对应关系: 中文(中国):values-zh-rCN 中文(台湾):values-zh-rTW 中文(香港):values-zh-rHK 英语(美国):values-en ...
- 浅谈双流水线调度问题以及Jhonson算法
引入:何为流水线问题 有\(n\)个任务,对于每个任务有\(m\)道工序,每个任务的\(m\)道工序必须在不同的m台机器上依次完成才算把这个任务完成,在前\(i-1\)道工序完成后才能去完成第\(i\ ...
- debian服务查询
1.查询 用root身份执行service --status-all查看所有服务的状态 "+" started "-" stopped "?" ...
- 清理:db上面的过期的binlog,释放磁盘空间。 (转)
如果10台以内的db的话,自己手动ssh进去,clean就足以,但是上百台呢,就要写脚本了.大概思路:在 一台db跳转机上面, 写一个脚本,访问slave,远程获取正在复制的master上面的binl ...