题目背景

\(Roy\)和\(October\)两人在玩一个取石子的游戏。

题目描述

游戏规则是这样的:共有\(n\)个石子,两人每次都只能取\(p^k\)个(\(p\)为质数,\(k\)为自然数,且\(p^k\)小于等于当前剩余石子数),谁取走最后一个石子,谁就赢了。

现在\(October\)先取,问她有没有必胜策略。

若她有必胜策略,输出一行"\(October wins!\)";否则输出一行"\(Roy wins!\)"。

输入输出格式

输入格式:

第一行一个正整数T,表示测试点组数。

第\(2\)行~第\((T+1)\)行,一行一个正整数\(n\),表示石子个数。

输出格式:

\(T\)行,每行分别为"\(October wins!\)"或"\(Roy wins!\)"。

输入输出样例

输入样例#1:

3
4
9
14

输出样例#1:

October wins!
October wins!
October wins!

说明

对于\(30\%\)的数据,\(1<=n<=30\);

对于\(60\%\)的数据,\(1<=n<=1,000,000\);

对于\(100\%\)的数据,\(1<=n<=50,000,000,1<=T<=100,000\)。

(改编题)

思路:被洛谷标签给骗了,不知道为什么这道题的标签是\(prim\),本来是想练最小生成树,看数据范围,根本不可做,而且……也没法建边啊,洛谷标签真的是……不过点进来了,就做做吧,发现这其实就是个打表题,如果输入的\(n\)模\(6\)值为\(0\),就是先手必败态,否则为先手必胜态。

代码:

#include<cstdio>
using namespace std;
int t,n;
int main() {
scanf("%d",&t);
while(t--) {
scanf("%d",&n);
if(n%6) printf("October wins!\n");
else printf("Roy wins!\n");
}
return 0;
}

洛谷P4018 Roy&October之取石子的更多相关文章

  1. 洛谷 P4018 Roy&October之取石子

    洛谷 P4018 Roy&October之取石子 题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取 p^kpk 个(p为质 ...

  2. 洛谷——P4018 Roy&October之取石子

    P4018 Roy&October之取石子 题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取p^kpk个(p为质数,k为自 ...

  3. 洛谷P4018 Roy&October之取石子 题解 博弈论

    题目链接:https://www.luogu.org/problem/P4018 首先碰到这道题目还是没有思路,于是寻思还是枚举找一找规律. 然后写了一下代码: #include <bits/s ...

  4. 洛谷P4860 Roy&October之取石子II 题解 博弈论

    题目链接:https://www.luogu.org/problem/P4860 和<P4018 Roy&October之取石子>一样的推导思路,去找循环节. 可以发现:只要不能被 ...

  5. P4018 Roy&October之取石子

    题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取 p^kpk 个(p为质数,k为自然数,且 p^kpk 小于等于当前剩余石子数), ...

  6. luogu P4018 Roy&October之取石子(博弈论)

    题意 题解 如果n是6的倍数,先手必败,否则先手必胜. 因为6*x一定不是pk 所以取得话会变成6*y+a的形式a=1,2,3,4,5: 然后a一定为质数.我们把a取完就又成为了6*x的形式. 又因为 ...

  7. 洛谷 Roy&October之取石子

    题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取pk 个(p为质数,k为自然数,且pk小于等于当前剩余石子数),谁取走最后一个石子 ...

  8. [luogu4018][Roy&October之取石子]

    题目链接 思路 这个题思路挺巧妙的. 情况一: 首先如果这堆石子的数量是1~5,那么肯定是先手赢.因为先手可以直接拿走这些石子.如果石子数量恰好是6,那么肯定是后手赢.因为先手无论怎样拿也无法直接拿走 ...

  9. [luogu4860][Roy&October之取石子II]

    题目链接 思路 这个题和上个题类似,仔细推一下就知道这个题是判断是否是4的倍数 代码 #include<cstdio> #include<iostream> #define f ...

随机推荐

  1. Git 部署 Web 网站

    /*************************************************************************** * Git 部署 Web 网站 * 说明: * ...

  2. JS字符串类型转日期然后进行日期比较

    1.字符串转日期格式 var stringToDate = function(dateStr,separator){ if(!separator){ separator="-"; ...

  3. bzoj 3653: 谈笑风生 可持久化线段树

    题目大意 在一棵单位边权的有根树上支持询问: 给定a,k求满足下列条件的有序三元对的个数. a,b,c互不相同 a,b均为c的祖先 a,b树上距离<=k 题解 solution 1 首先我们知道 ...

  4. backbonejs学习

    文章: http://www.cnblogs.com/yexiaochai/archive/2013/07/27/3219402.html http://blog.csdn.net/cony100/a ...

  5. 洛谷【P2005】A/B Problem II

    题目传送门:https://www.luogu.org/problemnew/show/P2005 高精除低精:https://www.cnblogs.com/AKMer/p/9724556.html ...

  6. UILabel常见用法

    //创建一个UILabel UILabel *label1 = [[UILabel alloc] initWithFrame:CGRectMake(50 , 100 , 200 , 560)]; // ...

  7. JUST第二界算法设计大赛题解

    1.问题描述: 悠悠假期同叔叔一起去书店,他选中了六本书,每本书的单价(单位:元)分别为:3.1,1.7,2,5.3,0.9 和7.2.不巧的是,叔叔只带了十几块钱,为了让悠悠高兴,叔叔同意买书,但提 ...

  8. C#动态给EXCEL列添加下拉选项

    Microsoft.Office.Interop.Excel.Application excel=new Microsoft.Office.Interop.Excel.Application(); M ...

  9. Linux下部署MySQL,大小写敏感踩坑记录

    今天在将开发环境中的门户数据库复制到新环境后,使用SqlSugar的ORM框架进行数据库操作的时候,出现了主键找不到的现象.排查了很久终于发现了关键点.特此记录. 1.开发环境:    操作系统:CE ...

  10. Nodejs调试技术

    基于Chrome浏览器的调试器 既然我们可以通过V8的调试插件来调试,那是否也可以借用Chrome浏览器的JavaScript调试器来调试呢?node-inspector模块提供了这样一种可能.我们需 ...