基于tensorflow的RBF神经网络案例
1 前言
在使用RBF神经网络实现函数逼近中,笔者介绍了使用 Matlab 训练RBF神经网络。本博客将介绍使用 tensorflow 训练RBF神经网络。代码资源见:RBF案例(更新版)
这几天,笔者在寻找 tensorflow 中 RBF 官方案例,没找到,又看了一些博客,发现这些博客或不能逼近多元函数,或不能批量训练。于是,自己手撕了一下代码。
RBF神经网络中需要求解的参数有4个:基函数的中心和方差、隐含层到输出层的权值和偏值。
RBF 神经网络的关键在于中心的选取,一般有如下三种方法:
- 直接计算法:直接通过先验经验固定中心,并计算方差,再通过有监督学习得到其他参数
- 自组织学习法:先通过k-means等聚类算法求出中心(无监督学习),并计算方差,再通过有监督学习得到其他参数
- 有监督学习法:直接通过有监督学习求出所有参数
在直接计算法和自组织学习法中,方差的计算公式如下:
其中 Cmax 表示 h 个中心间的最大距离。
本博客主要介绍后两种中心计算方法实现 RBF 神经网络。
笔者工作空间如下:
2 RBF神经网络实现
2.1 自组织学习选取RBF中心
RBF_kmeans.py
import tensorflow as tf
import numpy as np
from sklearn.cluster import KMeans
class RBF:
#初始化学习率、学习步数
def __init__(self,learning_rate=0.002,step_num=10001,hidden_size=10):
self.learning_rate=learning_rate
self.step_num=step_num
self.hidden_size=hidden_size
#使用 k-means 获取聚类中心、标准差
def getC_S(self,x,class_num):
estimator=KMeans(n_clusters=class_num,max_iter=10000) #构造聚类器
estimator.fit(x) #聚类
c=estimator.cluster_centers_
n=len(c)
s=0;
for i in range(n):
j=i+1
while j<n:
t=np.sum((c[i]-c[j])**2)
s=max(s,t)
j=j+1
s=np.sqrt(s)/np.sqrt(2*n)
return c,s
#高斯核函数(c为中心,s为标准差)
def kernel(self,x,c,s):
x1=tf.tile(x,[1,self.hidden_size]) #将x水平复制 hidden次
x2=tf.reshape(x1,[-1,self.hidden_size,self.feature])
dist=tf.reduce_sum((x2-c)**2,2)
return tf.exp(-dist/(2*s**2))
#训练RBF神经网络
def train(self,x,y):
self.feature=np.shape(x)[1] #输入值的特征数
self.c,self.s=self.getC_S(x,self.hidden_size) #获取聚类中心、标准差
x_=tf.placeholder(tf.float32,[None,self.feature]) #定义placeholder
y_=tf.placeholder(tf.float32,[None,1]) #定义placeholder
#定义径向基层
z=self.kernel(x_,self.c,self.s)
#定义输出层
w=tf.Variable(tf.random_normal([self.hidden_size,1]))
b=tf.Variable(tf.zeros([1]))
yf=tf.matmul(z,w)+b
loss=tf.reduce_mean(tf.square(y_-yf))#二次代价函数
optimizer=tf.train.AdamOptimizer(self.learning_rate) #Adam优化器
train=optimizer.minimize(loss) #最小化代价函数
init=tf.global_variables_initializer() #变量初始化
with tf.Session() as sess:
sess.run(init)
for epoch in range(self.step_num):
sess.run(train,feed_dict={x_:x,y_:y})
if epoch>0 and epoch%500==0:
mse=sess.run(loss,feed_dict={x_:x,y_:y})
print(epoch,mse)
self.w,self.b=sess.run([w,b],feed_dict={x_:x,y_:y})
def kernel2(self,x,c,s): #预测时使用
x1=np.tile(x,[1,self.hidden_size]) #将x水平复制 hidden次
x2=np.reshape(x1,[-1,self.hidden_size,self.feature])
dist=np.sum((x2-c)**2,2)
return np.exp(-dist/(2*s**2))
def predict(self,x):
z=self.kernel2(x,self.c,self.s)
pre=np.matmul(z,self.w)+self.b
return pre
2.2 有监督学习选取RBF中心
RBF_Supervised.py
import numpy as np
import tensorflow as tf
class RBF:
#初始化学习率、学习步数
def __init__(self,learning_rate=0.002,step_num=10001,hidden_size=10):
self.learning_rate=learning_rate
self.step_num=step_num
self.hidden_size=hidden_size
#高斯核函数(c为中心,s为标准差)
def kernel(self,x,c,s): #训练时使用
x1=tf.tile(x,[1,self.hidden_size]) #将x水平复制 hidden次
x2=tf.reshape(x1,[-1,self.hidden_size,self.feature])
dist=tf.reduce_sum((x2-c)**2,2)
return tf.exp(-dist/(2*s**2))
#训练RBF神经网络
def train(self,x,y):
self.feature=np.shape(x)[1] #输入值的特征数
x_=tf.placeholder(tf.float32,[None,self.feature]) #定义placeholder
y_=tf.placeholder(tf.float32,[None,1]) #定义placeholder
#定义径向基层
c=tf.Variable(tf.random_normal([self.hidden_size,self.feature]))
s=tf.Variable(tf.random_normal([self.hidden_size]))
z=self.kernel(x_,c,s)
#定义输出层
w=tf.Variable(tf.random_normal([self.hidden_size,1]))
b=tf.Variable(tf.zeros([1]))
yf=tf.matmul(z,w)+b
loss=tf.reduce_mean(tf.square(y_-yf))#二次代价函数
optimizer=tf.train.AdamOptimizer(self.learning_rate) #Adam优化器
train=optimizer.minimize(loss) #最小化代价函数
init=tf.global_variables_initializer() #变量初始化
with tf.Session() as sess:
sess.run(init)
for epoch in range(self.step_num):
sess.run(train,feed_dict={x_:x,y_:y})
if epoch>0 and epoch%500==0:
mse=sess.run(loss,feed_dict={x_:x,y_:y})
print(epoch,mse)
self.c,self.s,self.w,self.b=sess.run([c,s,w,b],feed_dict={x_:x,y_:y})
def kernel2(self,x,c,s): #预测时使用
x1=np.tile(x,[1,self.hidden_size]) #将x水平复制 hidden次
x2=np.reshape(x1,[-1,self.hidden_size,self.feature])
dist=np.sum((x2-c)**2,2)
return np.exp(-dist/(2*s**2))
def predict(self,x):
z=self.kernel2(x,self.c,self.s)
pre=np.matmul(z,self.w)+self.b
return pre
3 案例
3.1 一元函数逼近
待逼近函数:
(1)自组织学习选取RBF中心
test_kmeans.py
import numpy as np
import matplotlib.pyplot as plt
from RBF_kmeans import RBF
#待逼近的函数
def fun(x):
return x*x+2*x*np.sin(x)-np.exp(-x)/10
#生成样本
def generate_samples():
n=150 #样本点个数
wideX=0.03 #横轴噪声的宽度
wideY=0.5 #纵轴噪声宽度
t=np.linspace(-5,5,n).reshape(-1,1) #横轴理想值
u=fun(t) #纵轴理想值
noisyX=np.random.uniform(-wideX,wideX,n).reshape(n,-1) #横轴噪声
noisyY=np.random.uniform(-wideY,wideY,n).reshape(n,-1) #纵轴噪声
x=t+noisyX #横轴实际值
y=u+noisyY #纵轴实际值
return t,u,x,y
t,u,x,y=generate_samples()
rbf=RBF(0.003,20001,4) #学习率
rbf.train(x,y)
pre=rbf.predict(t)
plt.plot(x,y,'+')
plt.plot(t,u)
plt.plot(t,pre)
plt.legend(['dot','real','pre'],loc='upper left')
自组织学习选取RBF中心
(2)有监督学习选取RBF中心
test_Supervised.py
import numpy as np
import matplotlib.pyplot as plt
from RBF_Supervised import RBF
#待逼近的函数
def fun(x):
return x*x+2*x*np.sin(x)-np.exp(-x)/10
#生成样本
def generate_samples():
n=150 #样本点个数
wideX=0.03 #横轴噪声的宽度
wideY=0.5 #纵轴噪声宽度
t=np.linspace(-5,5,n).reshape(-1,1) #横轴理想值
u=fun(t) #纵轴理想值
noisyX=np.random.uniform(-wideX,wideX,n).reshape(n,-1) #横轴噪声
noisyY=np.random.uniform(-wideY,wideY,n).reshape(n,-1) #纵轴噪声
x=t+noisyX #横轴实际值
y=u+noisyY #纵轴实际值
return t,u,x,y
t,u,x,y=generate_samples()
rbf=RBF(0.003,20001,4) #学习率
rbf.train(x,y)
pre=rbf.predict(t)
plt.plot(x,y,'+')
plt.plot(t,u)
plt.plot(t,pre)
plt.legend(['dot','real','pre'],loc='upper left')
有监督学习选取RBF中心
3.2 二元函数逼近
待逼近函数:
(1)自组织学习选取RBF中心
test_kmeans2.py
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from RBF_kmeans import RBF
#待逼近的函数
def fun(t):
x1=(t+0.5*np.pi)*np.sin(t+0.5*np.pi)
x2=(t+0.5*np.pi)*np.cos(t+0.5*np.pi)
y=1.5*t
x=np.append(x1,x2,1)
return x,y
#生成样本
def generate_samples():
n=200 #样本点个数
wideX=0.6 #水平方向噪声的宽度
wideY=1 #纵轴噪声宽度
t=np.linspace(0,10*np.pi,n).reshape(-1,1) #横轴理想值
u,v=fun(t) #纵轴理想值
noisyX=np.random.uniform(-wideX,wideX,u.shape).reshape(n,-1) #水平方向噪声
noisyY=np.random.uniform(-wideY,wideY,n).reshape(n,-1) #纵轴噪声
x=u+noisyX #横轴实际值
y=v+noisyY #纵轴实际值
return u,v,x,y
u,v,x,y=generate_samples()
rbf=RBF(0.02,20001,10) #学习率
rbf.train(x,y)
pre=rbf.predict(u)
ax=plt.figure().gca(projection='3d')
ax.plot(x[:,0],x[:,1],y[:,0],'+')
ax.plot(u[:,0],u[:,1],v[:,0])
ax.plot(u[:,0],u[:,1],pre[:,0])
plt.legend(['dot','real','pre'],loc='upper left')
plt.show()
自组织学习选取RBF中心
(2)有监督学习选取RBF中心
test_Supervised2.py
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from RBF_Supervised import RBF
#待逼近的函数
def fun(t):
x1=(t+0.5*np.pi)*np.sin(t+0.5*np.pi)
x2=(t+0.5*np.pi)*np.cos(t+0.5*np.pi)
y=1.5*t
x=np.append(x1,x2,1)
return x,y
#生成样本
def generate_samples():
n=200 #样本点个数
wideX=0.6 #水平方向噪声的宽度
wideY=1 #纵轴噪声宽度
t=np.linspace(0,10*np.pi,n).reshape(-1,1) #横轴理想值
u,v=fun(t) #纵轴理想值
noisyX=np.random.uniform(-wideX,wideX,u.shape).reshape(n,-1) #水平方向噪声
noisyY=np.random.uniform(-wideY,wideY,n).reshape(n,-1) #纵轴噪声
x=u+noisyX #横轴实际值
y=v+noisyY #纵轴实际值
return u,v,x,y
u,v,x,y=generate_samples()
rbf=RBF(0.02,20001,10) #学习率
rbf.train(x,y)
pre=rbf.predict(u)
ax=plt.figure().gca(projection='3d')
ax.plot(x[:,0],x[:,1],y[:,0],'+')
ax.plot(u[:,0],u[:,1],v[:,0])
ax.plot(u[:,0],u[:,1],pre[:,0])
plt.legend(['dot','real','pre'],loc='upper left')
plt.show()
有监督学习选取RBF中心
通过实验可以看到:无论是一元函数逼近还是二元函数逼近,在隐藏层神经元个数、学习率、学习步数相同的情况下,有监督学习法都比自组织学习法效果好。
声明:本文转自基于tensorflow的RBF神经网络案例
基于tensorflow的RBF神经网络案例的更多相关文章
- 基于HHT和RBF神经网络的故障检测——第二篇论文读后感
故障诊断主要包括三部分: 1.故障信号检测方法(定子电流信号检测 [ 定子电流幅值和电流频谱 ] ,振动信号检测,温度信号检测,磁通检测法,绝缘检测法,噪声检测法) 2.故障信号的处理方法,即故障特征 ...
- 基于tensorflow搭建一个神经网络
一,tensorflow的简介 Tensorflow是一个采用数据流图,用于数值计算的 开源软件库.节点在图中表示数字操作,图中的线 则表示在节点间相互联系的多维数据数组,即张量 它灵活的架构让你可以 ...
- 基于TensorFlow的循环神经网络(RNN)
RNN适用场景 循环神经网络(Recurrent Neural Network)适合处理和预测时序数据 RNN的特点 RNN的隐藏层之间的节点是有连接的,他的输入是输入层的输出向量.extend(上一 ...
- 基于 SoC 的卷积神经网络车牌识别系统设计(1)概述
NOTES: 这是第三届全国大学生集成电路创新创业大赛 - Arm 杯 - 片上系统设计挑战赛(本人指导的一个比赛).主要划分为以下的 Top5 重点.难点.亮点.热点以及创新点:1.通过 Arm C ...
- Chinese-Text-Classification,用卷积神经网络基于 Tensorflow 实现的中文文本分类。
用卷积神经网络基于 Tensorflow 实现的中文文本分类 项目地址: https://github.com/fendouai/Chinese-Text-Classification 欢迎提问:ht ...
- 基于TensorFlow解决手写数字识别的Softmax方法、多层卷积网络方法和前馈神经网络方法
一.基于TensorFlow的softmax回归模型解决手写字母识别问题 详细步骤如下: 1.加载MNIST数据: input_data.read_data_sets('MNIST_data',one ...
- 深度学习(五)基于tensorflow实现简单卷积神经网络Lenet5
原文作者:aircraft 原文地址:https://www.cnblogs.com/DOMLX/p/8954892.html 参考博客:https://blog.csdn.net/u01287127 ...
- 使用TensorFlow的递归神经网络(LSTM)进行序列预测
本篇文章介绍使用TensorFlow的递归神经网络(LSTM)进行序列预测.作者在网上找到的使用LSTM模型的案例都是解决自然语言处理的问题,而没有一个是来预测连续值的. 所以呢,这里是基于历史观察数 ...
- 基于Tensorflow + Opencv 实现CNN自定义图像分类
摘要:本篇文章主要通过Tensorflow+Opencv实现CNN自定义图像分类案例,它能解决我们现实论文或实践中的图像分类问题,并与机器学习的图像分类算法进行对比实验. 本文分享自华为云社区< ...
- 从环境搭建到回归神经网络案例,带你掌握Keras
摘要:Keras作为神经网络的高级包,能够快速搭建神经网络,它的兼容性非常广,兼容了TensorFlow和Theano. 本文分享自华为云社区<[Python人工智能] 十六.Keras环境搭建 ...
随机推荐
- NSSCTF Round#11 Basic 密码个人赛复盘
[NSSRound#11 Basic]ez_enc ABAABBBAABABAABBABABAABBABAAAABBABABABAAABAAABBAABBBBABBABBABBABABABAABBAA ...
- 百度网盘(百度云)SVIP超级会员共享账号每日更新(2023.11.20)
百度网盘会员账号共享(11.20更新) 账号:zqv29268 密码:7003wayb 账号:rpz75364 密码:riyk1648 账号:0580quqn 密码:148hxhe 账号:132620 ...
- [转帖]tikv性能参数调优
https://www.cnblogs.com/FengGeBlog/p/10278368.html#:~:text=max-%20bytes%20-for-level-%20base%20%3D%2 ...
- [转帖]云平台部署CNA、VRM手动安装方法
云平台部署CNA.VRM手动安装方法 分享人:郭道川 00443725 日期:2018.11.06 Ⅰ. 项目介绍 该项目主要为XX煤矿智能煤炭项目云平台部署交付,该项目所采用的服务器为RH2 ...
- [转帖]kubernetes service 和 kube-proxy详解
https://plantegg.github.io/2020/01/22/kubernetes%20service/ 性能情况.. service 模式 根据创建Service的type类型不同,可 ...
- [转帖]Full GC (Ergonomics) 产生的原因
发生Full GC,有很多种原因,不仅仅是只有Allocation Failure. 还有以下这么多: #include "precompiled.hpp" #include &q ...
- [转帖]Redis之安全措施
指令安全 Redis的一些指令会对Redis服务的稳定性及安全性各方面造成影响,例如keys指令在数据量大的情况下会导致Redis卡顿,flushdb和flushall会导致Redis的数据被清空. ...
- vue3.0中reactive的正确使用姿势
场景 在项目开发的时候,前端肯定是先写静态页面 在静态页面写好之后 然后就可以与后端对接数据了[高兴] 但是在对接接口的时候 我们会发现后端返回来的字段与前端在页面上写的可能不一致 这个时候有意思的事 ...
- Xmind永久会员版本
Xmind软件不要多介绍了思维导图最好用的软件 PJ后可以直接使用高级版本功能如图 使用方式 下载我们提供的版本和.dll即可如图 点击Xmind安装默认C盘不可以自定义位置 安装完成后进入patch ...
- Git - 关联远程仓库以及同时使用Lab和Hub
更新一下,感觉有更简单的方式 就比如你git config 的 全局的name和email是lab的 那就clone github上的项目然后设置局部的name和email就行了 ********** ...