题目传送门

前置知识

扩展欧拉定理

解法

本题幂塔是有限层的,这里与 luogu P4139 上帝与集合的正确用法 中的无限层幂塔不同,故需要在到达递归边界 \(n+1\) 时进行特殊处理,对于处理 \(\varphi(p)\) 在递归过程中等于 \(1\) 的情况两题基本一致。

回忆扩展欧拉定理中的 \(b\) 和 \(\varphi(p)\) 的关系,如果我们按照 常规的快速幂写法 会出现问题,即我们无法正确判断 \(a^b\) 在作为下一次运算的指数时和 \(\varphi(p)\) 之间的大小关系,这就需要我们额外在快速幂的过程中判断 \(a^b\) 和 \(\varphi(p)\) 之间的大小关系。

  • 在这里可以使用 __int128_t 来代替实现高精度的快速幂。

另外由于本题的特殊规定 \(0^0=1\),故需要在当 \(a=0\) 时,对 \(b\) 的奇偶性进行判断。手模几组样例,发现结论挺显然的。

代码

#include<bits/stdc++.h>
using namespace std;
#define ll __int128_t
#define sort stable_sort
#define endl '\n'
ll read()
{
ll x=0,f=1;
char c=getchar();
while(c>'9'||c<'0')
{
if(c=='-')
{
f=-1;
}
c=getchar();
}
while('0'<=c&&c<='9')
{
x=x*10+c-'0';
c=getchar();
}
return x*f;
}
ll phi(ll n)
{
ll ans=n,i;
for(i=2;i<=sqrtl(n);i++)//因为使用了__int128_t,为防止CE便使用了sqrtl,亦可以写成i*i<=n的形式
{
if(n%i==0)
{
ans=ans/i*(i-1);
while(n%i==0)
{
n/=i;
}
}
}
if(n>1)
{
ans=ans/n*(n-1);
}
return ans;
}
ll qpow(ll a,ll b,ll p)
{
ll ans=1;
while(b)
{
if(b&1)
{
ans=ans*a;
if(ans>=p)//快速幂特殊处理1
{
ans=ans%p+p;
}
}
b>>=1;
a=a*a;
if(a>=p)//快速幂特殊处理2
{
a=a%p+p;
}
}
return ans;
}
ll f(ll i,ll n,ll p,ll a)
{
return (i==n+1||p==1)?1:qpow(a,f(i+1,n,phi(p),a),p);//对幂塔进行递归
}
int main()
{
ll t,a,b,i,p=1000000000,ans;
t=read();
for(i=1;i<=t;i++)
{
a=read();
b=read();
if(a==0)
{
if(b%2==0)
{
printf("1\n");
}
else
{
printf("0\n");
}
}
else
{
ans=f(1,b,p,a);
if(ans<p)
{
printf("%lld\n",ans);//因为最后结果小于1000000000,所以可以放心大胆地当作long long输出
}
else
{
printf("...%09lld\n",ans%p);//因为最后结果小于1000000000,所以可以放心大胆地当作long long输出
}
}
}
return 0;
}

SP10050 POWTOW - Power Tower City 题解的更多相关文章

  1. 【CodeForces】906 D. Power Tower 扩展欧拉定理

    [题目]D. Power Tower [题意]给定长度为n的正整数序列和模数m,q次询问区间[l,r]累乘幂%m的答案.n,q<=10^5,m,ai<=10^9. [算法]扩展欧拉定理 [ ...

  2. CodeForces - 906D Power Tower(欧拉降幂定理)

    Power Tower CodeForces - 906D 题目大意:有N个数字,然后给你q个区间,要你求每一个区间中所有的数字从左到右依次垒起来的次方的幂对m取模之后的数字是多少. 用到一个新知识, ...

  3. Codeforces 906D Power Tower(欧拉函数 + 欧拉公式)

    题目链接  Power Tower 题意  给定一个序列,每次给定$l, r$ 求$w_{l}^{w_{l+1}^{w_{l+2}^{...^{w_{r}}}}}$  对m取模的值 根据这个公式 每次 ...

  4. Codeforces Round #454 D. Power Tower (广义欧拉降幂)

    D. Power Tower time limit per test 4.5 seconds memory limit per test 256 megabytes input standard in ...

  5. CF906D Power Tower

    扩展欧拉定理 CF906D Power Tower 洛谷交的第二个黑题 题意 给出一个序列\(w-1,w_2,\cdots,w_n\),以及\(q\)个询问 每个询问给出\(l,r\),求: \[w_ ...

  6. CodeForces 907F Power Tower(扩展欧拉定理)

    Priests of the Quetzalcoatl cult want to build a tower to represent a power of their god. Tower is u ...

  7. bzoj3125: CITY 题解

    3125: CITY Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 486  Solved: 213[Submit][Status][Discuss] ...

  8. D - Power Tower欧拉降幂公式

    题意:给你一个数组a,q次查询,每次l,r,要求 \(a_{l}^{a_{l+1}}^{a_{l+2}}...{a_r}\) 题解:由欧拉降幂可知,最多log次eu(m)肯定变1,那么直接暴力即可,还 ...

  9. Power Strings[poj2406]题解

    Power Strings Description - Given two strings a and b we define ab to be their concatenation. For ex ...

  10. ZOJ 3195 Design the city 题解

    这个题目大意是: 有N个城市,编号为0~N-1,给定N-1条无向带权边,Q个询问,每个询问求三个城市连起来的最小权值. 多组数据 每组数据  1 < N < 50000  1 < Q ...

随机推荐

  1. jmap 查看jvm内存大小并进行dump文件内存分析

    本文为博主原创,未经允许不得转载: 1.jmap的使用 Jmap 可以用来查看内存信息,实例个数以及占用内存大小. jmap -histo[:live] 打印每个class的实例数目,内存占用,类全名 ...

  2. Nacos源码 (4) 配置中心

    本文阅读nacos-2.0.2的config源码,编写示例,分析推送配置.监听配置的原理. 客户端 创建NacosConfigService对象 Properties properties = new ...

  3. 供应链投毒预警 | 恶意Py包仿冒tensorflow AI框架实施后门投毒攻击

    概述 本周(2024年01月15号),悬镜供应链安全实验室在Pypi官方仓库(https://pypi.org/)中捕获1起Py包投毒事件,投毒者利用包名错误拼写(typo-squatting)的攻击 ...

  4. 16-集电极开路门(OC门)

    集电极开路门(OC门) OC门 两个与非门,要实现非,一般来讲再与一下就可以. 能不能将输出端并在一起?普通的门电路永远不可能输出端并在一起,连在一起的. TTL与非门输出端连在一起 集电极断开之后连 ...

  5. udp编程及udp常见问题处理

    前言 UDP协议是User Datagram Protocol的缩写,它是无连接,不可靠的网络协议.一般使用它进行实时性数据的传输,主要是因为它快,但因为它是不可靠的一种传输协议,所以不可避免的会出现 ...

  6. Django应用中的静态文件处理

    在日常开发中,我们都是把Django的Debug模式打开,方便调试,在这个模式下,由Django内置的Web服务器提供静态文件服务,不过需要进行一些配置,才能正确访问. 配置settings # St ...

  7. TLS简单理解

    TLS简单理解 TLS的历史 From GTP3.5 TLS(传输层安全)是一种加密协议,旨在确保 Internet 通信的安全性和隐私保护.下面是 TLS 的历史概述: SSL(安全套接层):TLS ...

  8. [转帖]ORACLE等待事件:enq: TX - row lock contention

    https://www.cnblogs.com/kerrycode/p/5887150.html enq: TX - row lock contention等待事件,这个是数据库里面一个比较常见的等待 ...

  9. [转帖]MySQL: Convert decimal to binary

    Last Update:2018-12-05 Source: Internet  Author: User Tags decimal to binary mysql code Developer on ...

  10. [转帖]【jmeter】BeanShell用法详细汇总

    一.什么是Bean Shell BeanShell是用Java写成的,一个小型的.免费的.可以下载的.嵌入式的Java源代码解释器,具有对象脚本语言特性,非常精简的解释器jar文件大小为175k. B ...