#树形dp#nssl 1469 W
分析
首先一些结论,每条边最多被翻一次,而且由翻的边所构成的连通块答案就是度数为奇数的点的个数的一半,
因为在连通块内必然选择两个叶子节点间的路径翻是最优的,所以也就是选择两个度数为奇数的点,所以结论很显然
设\(dp[i][0/1]\)表示第\(i\)个点与其父亲的边翻或不翻时,以第\(i\)个点为根的子树的最小代价(操作数\(x\)和路径长度\(y\))
设\(f[0/1]\)表示第\(i\)个点的儿子们是否影响第\(i\)个点的度数的最小代价(儿子们的答案之和)
那么\(f[0]=\min \{f[0]+dp[son][0],f[1]+dp[son][1]\},f[1]=\min\{f[0]+dp[son][1],f[1]+dp[son][0]\}\)
考虑用\(f[0],f[1]\)更新\(dp[i][0/1]\),那么\(dp[i][0]=\min\{(f[1].x+1,f[1].y),f[0]\},dp[i][1]=\min\{(f[1].x,f[1].y+1),(f[0].x+1,f[0].y+1)\}\)
最后输出\(dp[1][0]\)
代码
#include <cstdio>
#include <cctype>
#include <cstdlib>
#define rr register
using namespace std;
const int inf=1e9,N=100011;
struct rec{
int x,y;
rec operator +(const rec &t)const{
return (rec){x+t.x,y+t.y};
}
bool operator <(const rec &t)const{
return x<t.x||(x==t.x&&y<t.y);
}
}dp[N][2];
struct node{int y,w,next;}e[N<<1];
int as[N],k=1,n;
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline rec Min(rec x,rec y){return x<y?x:y;}
inline void dfs(int x,int fa,int w){
rr rec f1=(rec){0,0},f2=(rec){inf,inf},F1,F2;
for (rr int i=as[x];i;i=e[i].next)
if (e[i].y!=fa){
dfs(e[i].y,x,e[i].w);
F1=Min(f1+dp[e[i].y][0],f2+dp[e[i].y][1]);
F2=Min(f1+dp[e[i].y][1],f2+dp[e[i].y][0]);
f1=F1,f2=F2;
}
if (w==1) dp[x][0]=(rec){inf,inf};
else dp[x][0]=Min(f1,(rec){f2.x+1,f2.y});
if (w==0) dp[x][1]=(rec){inf,inf};
else dp[x][1]=Min((rec){f1.x+1,f1.y+1},(rec){f2.x,f2.y+1});
}
signed main(){
n=iut();
for (rr int i=1;i<n;++i){
rr int x=iut(),y=iut();
rr int z1=iut(),z2=iut();
rr int z=z2==2?z2:(z1^z2);
e[++k]=(node){y,z,as[x]},as[x]=k;
e[++k]=(node){x,z,as[y]},as[y]=k;
}
dfs(1,0,0);
return !printf("%d %d",dp[1][0].x>>1,dp[1][0].y);
}
#树形dp#nssl 1469 W的更多相关文章
- [NOIP10.3模拟赛]3.w题解--神奇树形DP
题目链接: 咕 闲扯: 这题考场上把子任务都敲满了,5个namespace,400行11k 结果爆0了哈哈,因为写了个假快读只能读入一位数,所以手测数据都过了,交上去全TLE了 把边分成三类:0. 需 ...
- COGS 2532. [HZOI 2016]树之美 树形dp
可以发现这道题的数据范围有些奇怪,为毛n辣么大,而k只有10 我们从树形dp的角度来考虑这个问题. 如果我们设f[x][k]表示与x距离为k的点的数量,那么我们可以O(1)回答一个询问 可是这样的话d ...
- 树形DP+DFS序+树状数组 HDOJ 5293 Tree chain problem(树链问题)
题目链接 题意: 有n个点的一棵树.其中树上有m条已知的链,每条链有一个权值.从中选出任意个不相交的链使得链的权值和最大. 思路: 树形DP.设dp[i]表示i的子树下的最优权值和,sum[i]表示不 ...
- 树形DP
切题ing!!!!! HDU 2196 Anniversary party 经典树形DP,以前写的太搓了,终于学会简单写法了.... #include <iostream> #inclu ...
- BZOJ 2286 消耗战 (虚树+树形DP)
给出一个n节点的无向树,每条边都有一个边权,给出m个询问,每个询问询问ki个点,问切掉一些边后使得这些顶点无法与顶点1连接.最少的边权和是多少.(n<=250000,sigma(ki)<= ...
- HDU4003Find Metal Mineral[树形DP 分组背包]
Find Metal Mineral Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65768/65768 K (Java/Other ...
- NOIP2011pj表达式的值[树形DP 笛卡尔树 | 栈 表达式解析]
题目描述 对于1 位二进制变量定义两种运算: 运算的优先级是: 先计算括号内的,再计算括号外的. “× ”运算优先于“⊕”运算,即计算表达式时,先计算× 运算,再计算⊕运算.例如:计算表达式A⊕B × ...
- 【BZOJ-3572】世界树 虚树 + 树形DP
3572: [Hnoi2014]世界树 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1084 Solved: 611[Submit][Status ...
- 【BZOJ-2286】消耗战 虚树 + 树形DP
2286: [Sdoi2011消耗战 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 2120 Solved: 752[Submit][Status] ...
- 【BZOJ-2435】道路修建 (树形DP?)DFS
2435: [Noi2011]道路修建 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3115 Solved: 1002[Submit][Statu ...
随机推荐
- c# 4.8 实现Windows 定时任务计划(Task Scheduler)
分享一个我自己写的 Windows 定时任务计划(Task Scheduler) 动态创建代码,没做太多封装,留个实现笔记 首先封装一个简单配置项的类 1 public class TaskSched ...
- centos docker服务问题
概述 docker的应用版本正式上线,结果一上线就出各种幺蛾子. 本文档主要介绍centos系统安装docker和启动的问题解决方法. 环境 docker registry:2 centos 6 &a ...
- 【Azure App Service for Windows】 PHP应用出现500 : The page cannot be displayed because an internal server error has occurred. 错误
问题描述 PHP应用突然遇见了500 The page cannot be displayed because an internal server error has occurred.错误,但是如 ...
- 【Azure App Service】通过Visual Studio部署Azure App Service 遇见 401 'Unauthorized'错误
问题描述 最近通过Visual Studio 2022部署Azure App Service的时候,突然遇见了部署失败, 401 Unauthorized错误. 错误消息: Build started ...
- 【Azure API 管理】在 Azure API 管理中使用 OAuth 2.0 授权和 Azure AD 保护 Web API 后端,在请求中携带Token访问后报401的错误
问题描述 在 Azure API 管理中使用 OAuth 2.0 授权和 Azure AD 保护 Web API 后端的文档中操作 "在开发人员门户中启用 OAuth 2.0 用户授权&qu ...
- 分布式事务框架seata入门
一.简介 在近几年流行的微服务架构中,由于对服务和数据库进行了拆分,原来的一个单进程本地事务变成多个进程的本地事务,这时要保证数据的一致性,就需要用到分布式事务了.分布式事务的解决方案有很多,其中国内 ...
- 云原生 on nLive:云上 Nebula Graph
本文首发于 Nebula Graph Community 公众号 在 #云原生# 主题分享中,来自 Nebula 云组的 Cloud 专家乔雷同大家分享云的相关知识,本文整理自该次主题直播. 云原生是 ...
- [java] Tomcat 启动失败 Error: error while reading constant pool for .class: unexpected tag at #
表现 公司服务器今天启动tomcat失败, 看catalina.out文件里面报错 java.lang.ClassFormatError: Unknown constant tag 101 in cl ...
- SpringCloudStream消息驱动
1. 基本介绍 官方文档: https://spring.io/projects/spring-cloud-stream#learn 背景: 在一般的大型项目中,或者分布式微服务结构的系统里,一般都会 ...
- 聚焦企业流程智能化发展新趋势,中国信通院2022 RPA创新产业峰会即将开启
机器人流程自动化(Robotic Process Automation,RPA)是数字时代的重要劳动力之一,流程的自动化.智能化运行是企业释放运营能效.提升客户服务水平的重要路径. 近年来,各行业对R ...