#KMP,矩阵乘法#洛谷 3193 [HNOI2008]GT考试
题目
给定\(n,m,K\)和一个长度为\(m\)的数\(x\),
问有多少个\(n\)位数满足任意一段不与\(x\)完全相同,可含前导0
\(n\leq 10^9,m\leq 20\)
分析
设\(dp[i][j]\)表示前\(i\)个数位匹配到\(x\)的第\(j\)位的方案数,
可以发现加入一个新的字母不一定重新开始匹配,所以需要求出最长公共前后缀,
用KMP实现,至于\(n\leq 10^9\)可以用矩阵乘法维护转移即可
代码
#include <cstdio>
#include <cstring>
#define rr register
using namespace std;
struct maix{int p[20][20];}A,ANS;
int n,m,mod,fail[21],ans; char s[21];
inline signed mo(int x,int y){return x+y>=mod?x+y-mod:x+y;}
inline maix mul(maix A,maix B){
rr maix C;
memset(C.p,0,sizeof(C.p));
for (rr int i=0;i<m;++i)
for (rr int j=0;j<m;++j)
for (rr int k=0;k<m;++k)
C.p[i][j]=mo(C.p[i][j],A.p[i][k]*B.p[k][j]%mod);
return C;
}
signed main(){
scanf("%d%d%d%s",&n,&m,&mod,s+1);
for (rr int i=2,j=0;i<=m;++i){
while (j&&s[j+1]!=s[i]) j=fail[j];
fail[i]=(j+=(s[j+1]==s[i]));
}
for (rr int i=0;i<m;++i)
for (rr int P=48;P<=57;++P){
rr int j=i;
while (j&&s[j+1]!=P) j=fail[j];
j+=(s[j+1]==P);
if (j!=m) ++A.p[i][j];
}
for (rr int i=0;i<m;++i) ANS.p[i][i]=1;
for (;n;n>>=1,A=mul(A,A))
if (n&1) ANS=mul(ANS,A);
for (rr int i=0;i<m;++i) ans=mo(ans,ANS.p[0][i]);
return !printf("%d",ans);
}
#KMP,矩阵乘法#洛谷 3193 [HNOI2008]GT考试的更多相关文章
- 洛谷P3193 [HNOI2008]GT考试(KMP,矩阵)
传送门 大佬讲的真吼->这里 首先考虑dp,设$f[i][j]$表示长串匹配到第$i$位,短串最多匹配到$j$位时的方案数 那么答案就是$\sum_{i=0}^{m-1}f[n][i]$ 然后考 ...
- 【KMP】【矩阵加速】【递推】洛谷 P3193 [HNOI2008]GT考试 题解
看出来矩阵加速也没看出来KMP…… 题目描述 阿申准备报名参加 GT 考试,准考证号为\(N\)位数\(X_1,X_2…X_n(0\le X_i\le9)\),他不希望准考证号上出现不吉利的数 ...
- 洛谷P3193 [HNOI2008]GT考试(dp 矩阵乘法)
题意 题目链接 Sol 设\(f[i][j]\)表示枚举到位置串的第i位,当前与未知串的第j位匹配,那么我们只要保证在转移的时候永远不会匹配即可 预处理出已知串的每个位置加上某个字符后能转移到的位置, ...
- 洛谷P3193 [HNOI2008]GT考试 kmp+dp
正解:kmp+dp+矩阵优化 解题报告: 传送门! 啊刚说想做矩阵优化dp的字符串题就找到辣QwQ虽然不是AC自动机的但都差不多嘛QwQ 首先显然可以想到一个dp式?就f[i][j]:凑出i位了,在s ...
- 斜率优化dp学习笔记 洛谷P3915[HNOI2008]玩具装箱toy
本文为原创??? 作者写这篇文章的时候刚刚初一毕业…… 如有错误请各位大佬指正 从例题入手 洛谷P3915[HNOI2008]玩具装箱toy Step0:读题 Q:暴力? 如果您学习过dp 不难推出d ...
- BZOJ_1009_[HNOI2008]_GT考试_(动态规划+kmp+矩阵乘法优化+快速幂)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1009 字符串全部由0~9组成,给出一个串s,求一个长度为n的串,不包含s的种类有多少. 分析 ...
- bzoj1009: [HNOI2008]GT考试(kmp+矩阵乘法)
1009: [HNOI2008]GT考试 题目:传送门 题解: 看这第一眼是不是瞬间想起组合数学??? 没错...这样想你就GG了! 其实这是一道稍有隐藏的矩阵乘法,好题! 首先我们可以简化一下题意: ...
- bzoj 1009 [HNOI2008]GT考试(DP+KMP+矩阵乘法)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1009 [题意] 给定一个字符串T,问长度为n且不包含串T的字符串有多少种. [思路] ...
- [bzoj1009][HNOI2008]GT考试——KMP+矩阵乘法
Brief Description 给定一个长度为m的禁止字符串,求出长度为n的字符串的个数,满足: 这个字符串的任何一个字串都不等于给定字符串. 本题是POJ3691的弱化版本. Algorithm ...
- HNOI2008 GT考试 (KMP + 矩阵乘法)
传送门 这道题目的题意描述,通俗一点说就是这样:有一个长度为n的数字串(其中每一位都可以是0到9之间任意一个数字),给定一个长度为m的模式串,求有多少种情况,使得此模式串不为数字串的任意一个子串.结果 ...
随机推荐
- 常用JDBC连接池
如下整理常用JDBC连接池组件. HikariCP 针对不同的JDK需要引入对应的HikariCP,详见:Github项目地址 . 以JDK8为例子,在项目中引入如下依赖: <dependenc ...
- Java缓存框架整理
Spring Cache 为基于Spring框架的应用提供了一套完整的缓存API抽象,具体的缓存实现可以对接如Ehcache,Redis等. https://docs.spring.io/spring ...
- 【Azure Redis】Redis客户端出现15分钟的超时异常
问题描述 客户端使用 Lettuce.io 连接 Azure Redis,出现了长达15分钟的Timeout异常. 问题解答 Azure Redis作为PaaS服务,由于一些平台的升级操作而引发的故障 ...
- 手把手教你python数据处理项目——探索ebay汽车销售数据
探索Ebay汽车销售数据 一.实验目的 1. 熟悉清理数据的流程: 2. 分析Ebay二手车销售数据: 3. 了解jupyter notebook为pandas提供的一些独特特性. 二.实验开发环 ...
- ffmpeg 使用记录
这周周末尝试把我硬盘上面的视频文件压缩了一下,但是效果并不理想.其中主要有两个原因, 视频本来就是h264的编码,再重新编码也没啥用,因为限制大小的主要是码率 ffmpeg GPU加速版的h265编码 ...
- CDC作业历史记录无法删除问题
背景 数据库开启CDC功能后,每天会生成大量的历史记录,即使达到参数"每个作业的最大历史记录"的阈值后也不会被删除,导致其它作业的历史记录被删除,无法查看以前的执行情况,非常不方便 ...
- 使用rpa打开浏览器并执行js抓取页面元素详情步骤
这里我们专门开一个文章来写如何在rpa中执行js获取页面元素. 个人觉得,复杂点的需求用js会方便很多,所以后续的文章我都会重点使用js去获取页面元素. 好,正文开始,我们先看一下rpa为我们提供的自 ...
- 修改html5 placeholder文字默认颜色
注意: 1.input后面的冒号不要写错! 2.-moz后面是没有input字样,火狐设置字体颜色为#000,但是他不是全黑,好像有个度似的!(个人认为) input:-ms-input-placeh ...
- RIPEMD算法:多功能哈希算法的瑰宝
一.RIPEMD算法的起源与历程 RIPEMD(RACE Integrity Primitives Evaluation Message Digest)算法是由欧洲研究项目RACE发起,由Hans D ...
- Windows10 windows installer卸载或安装不了软件怎么办?
先说我的方法: 1.把安装出现问题的软件或者想要卸载的软件的安装目录下的所有文件都删除. 2.用清理软件清理一下垃圾,包括注册表,这里我自己使用的是火绒->安全工具- ...