#KMP,矩阵乘法#洛谷 3193 [HNOI2008]GT考试
题目
给定\(n,m,K\)和一个长度为\(m\)的数\(x\),
问有多少个\(n\)位数满足任意一段不与\(x\)完全相同,可含前导0
\(n\leq 10^9,m\leq 20\)
分析
设\(dp[i][j]\)表示前\(i\)个数位匹配到\(x\)的第\(j\)位的方案数,
可以发现加入一个新的字母不一定重新开始匹配,所以需要求出最长公共前后缀,
用KMP实现,至于\(n\leq 10^9\)可以用矩阵乘法维护转移即可
代码
#include <cstdio>
#include <cstring>
#define rr register
using namespace std;
struct maix{int p[20][20];}A,ANS;
int n,m,mod,fail[21],ans; char s[21];
inline signed mo(int x,int y){return x+y>=mod?x+y-mod:x+y;}
inline maix mul(maix A,maix B){
rr maix C;
memset(C.p,0,sizeof(C.p));
for (rr int i=0;i<m;++i)
for (rr int j=0;j<m;++j)
for (rr int k=0;k<m;++k)
C.p[i][j]=mo(C.p[i][j],A.p[i][k]*B.p[k][j]%mod);
return C;
}
signed main(){
scanf("%d%d%d%s",&n,&m,&mod,s+1);
for (rr int i=2,j=0;i<=m;++i){
while (j&&s[j+1]!=s[i]) j=fail[j];
fail[i]=(j+=(s[j+1]==s[i]));
}
for (rr int i=0;i<m;++i)
for (rr int P=48;P<=57;++P){
rr int j=i;
while (j&&s[j+1]!=P) j=fail[j];
j+=(s[j+1]==P);
if (j!=m) ++A.p[i][j];
}
for (rr int i=0;i<m;++i) ANS.p[i][i]=1;
for (;n;n>>=1,A=mul(A,A))
if (n&1) ANS=mul(ANS,A);
for (rr int i=0;i<m;++i) ans=mo(ans,ANS.p[0][i]);
return !printf("%d",ans);
}
#KMP,矩阵乘法#洛谷 3193 [HNOI2008]GT考试的更多相关文章
- 洛谷P3193 [HNOI2008]GT考试(KMP,矩阵)
传送门 大佬讲的真吼->这里 首先考虑dp,设$f[i][j]$表示长串匹配到第$i$位,短串最多匹配到$j$位时的方案数 那么答案就是$\sum_{i=0}^{m-1}f[n][i]$ 然后考 ...
- 【KMP】【矩阵加速】【递推】洛谷 P3193 [HNOI2008]GT考试 题解
看出来矩阵加速也没看出来KMP…… 题目描述 阿申准备报名参加 GT 考试,准考证号为\(N\)位数\(X_1,X_2…X_n(0\le X_i\le9)\),他不希望准考证号上出现不吉利的数 ...
- 洛谷P3193 [HNOI2008]GT考试(dp 矩阵乘法)
题意 题目链接 Sol 设\(f[i][j]\)表示枚举到位置串的第i位,当前与未知串的第j位匹配,那么我们只要保证在转移的时候永远不会匹配即可 预处理出已知串的每个位置加上某个字符后能转移到的位置, ...
- 洛谷P3193 [HNOI2008]GT考试 kmp+dp
正解:kmp+dp+矩阵优化 解题报告: 传送门! 啊刚说想做矩阵优化dp的字符串题就找到辣QwQ虽然不是AC自动机的但都差不多嘛QwQ 首先显然可以想到一个dp式?就f[i][j]:凑出i位了,在s ...
- 斜率优化dp学习笔记 洛谷P3915[HNOI2008]玩具装箱toy
本文为原创??? 作者写这篇文章的时候刚刚初一毕业…… 如有错误请各位大佬指正 从例题入手 洛谷P3915[HNOI2008]玩具装箱toy Step0:读题 Q:暴力? 如果您学习过dp 不难推出d ...
- BZOJ_1009_[HNOI2008]_GT考试_(动态规划+kmp+矩阵乘法优化+快速幂)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1009 字符串全部由0~9组成,给出一个串s,求一个长度为n的串,不包含s的种类有多少. 分析 ...
- bzoj1009: [HNOI2008]GT考试(kmp+矩阵乘法)
1009: [HNOI2008]GT考试 题目:传送门 题解: 看这第一眼是不是瞬间想起组合数学??? 没错...这样想你就GG了! 其实这是一道稍有隐藏的矩阵乘法,好题! 首先我们可以简化一下题意: ...
- bzoj 1009 [HNOI2008]GT考试(DP+KMP+矩阵乘法)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1009 [题意] 给定一个字符串T,问长度为n且不包含串T的字符串有多少种. [思路] ...
- [bzoj1009][HNOI2008]GT考试——KMP+矩阵乘法
Brief Description 给定一个长度为m的禁止字符串,求出长度为n的字符串的个数,满足: 这个字符串的任何一个字串都不等于给定字符串. 本题是POJ3691的弱化版本. Algorithm ...
- HNOI2008 GT考试 (KMP + 矩阵乘法)
传送门 这道题目的题意描述,通俗一点说就是这样:有一个长度为n的数字串(其中每一位都可以是0到9之间任意一个数字),给定一个长度为m的模式串,求有多少种情况,使得此模式串不为数字串的任意一个子串.结果 ...
随机推荐
- Vulnhub靶机网卡启动失败(Raise network interfaces)
问题 使用一些Linux靶机进行搭建后可能会出现无法搜索到IP的情况,并且会在系统启动时报错,类似下图所示 这个主要是因为vulnhub上的镜像由于搭建环境.版本等问题不适配,网卡没有正确识别导致的, ...
- 【LeetCode二叉树#13】遍历二叉搜索树
二叉搜索树中的搜索 力扣题目地址(opens new window) 给定二叉搜索树(BST)的根节点和一个值. 你需要在BST中找到节点值等于给定值的节点. 返回以该节点为根的子树. 如果节点不存在 ...
- You can't specify target table for update in FROM clause
mysql中You can't specify target table for update in FROM clause错误的意思是说,不能先select出同一表中的某些值,再update这个表( ...
- 【Azure 微服务】新创建的Service Fabric集群,如何从本地机器上连接到Service Fabric Explorer(Service Fabric状态/错误查看工具)呢?
问题描述 当在Azure中成功创建一个Service Fabric Cluster 服务后,我们能够在它的Overview页面中发现 Service Fabric Explorer的终结点,但是打开后 ...
- 【Azure 应用服务】 在App Service中无法上传证书[Private Key Certificates (.pfx)],导入Azure Key Vault中的证书也无法成功
问题描述 在App Service的TLS/SSL settings页面,切换到Private Key Certificates (.pfx),通过Import Key Vault Certifica ...
- CSRF(Steam的链接不用随便点)
漏洞详解 CSRF 漏洞原理: 攻击者会冒充或利用用户本人对web服务器发送请求,然而web服务器无法识别该请求是否为用户本人所发送,因此造成各种危害. 漏洞利用过程: 1)首先需要用户登录了上网站, ...
- STL-queue模拟实现
#include<list> #include<assert.h> #include<deque> #include<iostream> using s ...
- element_ui实现表格内套表单,点击可以编辑
<template> <div class="app-container"> <el-table :data="list" str ...
- Fiddler修改响应体
方法1 将请求从左侧列表中,拖入AutoResponder中. 然后右键规则,点击编辑 修改后点击save 方法2 在AutoResponder中选择Create New Response也可类似方式 ...
- Zabbix“专家坐诊”第179期问答汇总
欢迎大家加入乐维社区zabbix问答专栏,除了在论坛发帖求问外,还可以在QQ群里交流进步,并且每周三我们会进行免费的技术答疑活动. 问题一: Q:Zabbix alert syncer process ...