Problem Statement

There is a tree with $N$ vertices numbered $1$ to $N$. The $i$-th edge connects vertices $A_i$ and $B_i$.

Let us keep performing the following operation until each connected component of the graph has $K$ or fewer vertices.

  • From the $N$ vertices, choose one uniformly at random that belongs to a connected component with $K+1$ or more vertices. Delete all edges with the chosen vertex as an endpoint.

Find the expected value of the number of times the operation is performed, modulo $998244353$.

How to print an expected value modulo $\text{mod }{998244353}$

It can be proved that the sought expected value is always a rational number. Additionally, under the constraints of this problem, it can also be proved that when that value is represented as an irreducible fraction $\frac{P}{Q}$, we have $Q \not \equiv 0 \pmod{998244353}$. Thus, there is a unique integer $R$ such that $R \times Q \equiv P \pmod{998244353}, 0 \leq R < 998244353$. Report this $R$.

Constraints

  • $1 \leq K < N \leq 100$
  • $1 \leq A_i,B_i \leq N$
  • The given graph is a tree.
  • All input values are integers.

期望题首先有个经典转换:消掉连通块大于等于 $K$ 的限制,然后当我选到了一个小于 $K$ 的点就不管继续选,这样子答案是不会变的。

考虑一个大小为 \(n\),与其相邻的有 \(m\) 个点的连通块,在某一时刻操作出来的概率是 \(\frac{(n+m)!}{n!m!}\),而这些概率之和就是期望。

用树形 dp 求出来一共有多少个大小为 \(n\),与其相连的点有 \(m\) 个的连通块,分别计算即可。

#include<bits/stdc++.h>
using namespace std;
const int P=998244353,N=105;
int n,k,u,v,sz[N],in[N],jc[N],iv[N],inv[N],dp[N][N][N],hd[N],ans,e_num,f[N][N];
struct edge{
int v,nxt;
}e[N<<1];
void dfs(int x,int y)
{
dp[x][sz[x]=1][(bool)y]=1;
for(int v=hd[x];v;v=e[v].nxt)
{
if(e[v].v==y)
continue;
dfs(e[v].v,x);
for(int i=0;i<=sz[x];i++)
for(int j=0;j<=sz[x]+1;j++)
f[i][j]=dp[x][i][j],dp[x][i][j]=0;
for(int i=sz[x];~i;i--)
{
for(int j=sz[x];~j;j--)
{
for(int a=sz[e[v].v];a;a--)
for(int b=sz[e[v].v];b;b--)
(dp[x][i+a][j+b-1]+=f[i][j]*1LL*dp[e[v].v][a][b]%P)%=P;
(dp[x][i][j+1]+=f[i][j])%=P;
}
}
sz[x]+=sz[e[v].v];
}
for(int i=k+1;i<=sz[x];i++)
for(int j=0;j<=sz[x];j++)
(ans+=jc[i]*1LL*jc[j]%P*iv[i+j]%P*dp[x][i][j]%P)%=P;
/*for(int i=0;i<=sz[x];i++)
for(int j=0;j<=sz[x];j++)
if(dp[x][i][j])
printf("%d %d %d %d\n",x,i,j,dp[x][i][j]);*/
}
void add_edge(int u,int v)
{
in[u]++;
e[++e_num]=(edge){v,hd[u]};
hd[u]=e_num;
}
int main()
{
scanf("%d%d",&n,&k);
jc[0]=jc[1]=iv[0]=iv[1]=inv[1]=1;
for(int i=2;i<N;i++)
{
jc[i]=1LL*jc[i-1]*i%P;
inv[i]=1LL*(P-P/i)*inv[P%i]%P;
iv[i]=1LL*iv[i-1]*inv[i]%P;
}
for(int i=1;i<n;i++)
scanf("%d%d",&u,&v),add_edge(u,v),add_edge(v,u);
dfs(1,0);
printf("%d",ans);
}

[ARC165E] Random Isolation的更多相关文章

  1. 异常检测算法--Isolation Forest

    南大周志华老师在2010年提出一个异常检测算法Isolation Forest,在工业界很实用,算法效果好,时间效率高,能有效处理高维数据和海量数据,这里对这个算法进行简要总结. iTree 提到森林 ...

  2. Python机器学习笔记 异常点检测算法——Isolation Forest

    Isolation,意为孤立/隔离,是名词,其动词为isolate,forest是森林,合起来就是“孤立森林”了,也有叫“独异森林”,好像并没有统一的中文叫法.可能大家都习惯用其英文的名字isolat ...

  3. [转]Python机器学习笔记 异常点检测算法——Isolation Forest

    Isolation,意为孤立/隔离,是名词,其动词为isolate,forest是森林,合起来就是“孤立森林”了,也有叫“独异森林”,好像并没有统一的中文叫法.可能大家都习惯用其英文的名字isolat ...

  4. 孤立森林(Isolation Forest)

    前言随着机器学习近年来的流行,尤其是深度学习的火热.机器学习算法在很多领域的应用越来越普遍.最近,我在一家广告公司做广告点击反作弊算法研究工作.想到了异常检测算法,并且上网调研发现有一个算法非常火爆, ...

  5. 【异常检测】Isolation forest 的spark 分布式实现

    1.算法简介 算法的原始论文 http://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/icdm08b.pdf .python的sklearn中已经实现 ...

  6. isolation forest进行异常点检测

    一.简介 孤立森林(Isolation Forest)是另外一种高效的异常检测算法,它和随机森林类似,但每次选择划分属性和划分点(值)时都是随机的,而不是根据信息增益或者基尼指数来选择.在建树过程中, ...

  7. [置顶] Isolation Forest算法实现详解

    本文算法完整实现源码已开源至本人的GitHub(如果对你有帮助,请给一个 star ),参看其中的 iforest 包下的 IForest 和 ITree 两个类: https://github.co ...

  8. [置顶] Isolation Forest算法原理详解

    本文只介绍原论文中的 Isolation Forest 孤立点检测算法的原理,实际的代码实现详解请参照我的另一篇博客:Isolation Forest算法实现详解. 或者读者可以到我的GitHub上去 ...

  9. Isolation Forest算法实现详解

    本文介绍的 Isolation Forest 算法原理请参看我的博客:Isolation Forest异常检测算法原理详解,本文中我们只介绍详细的代码实现过程. 1.ITree的设计与实现 首先,我们 ...

  10. (转)isolation forest进行异常点检测

    原文链接:https://www.cnblogs.com/gczr/p/9156971.html 一.简介 孤立森林(Isolation Forest)是另外一种高效的异常检测算法,它和随机森林类似, ...

随机推荐

  1. [ABC148F] Playing Tag on Tree

    2023-03-04 题目 题目传送门 翻译 翻译 难度&重要性(1~10):5 题目来源 AtCoder 题目算法 最短路 解题思路 考虑到 T 想活得久, A 想尽早追上 T ,所以我们就 ...

  2. Unity UGUI的Slider(滑动条)件组的介绍及使用

    Unity UGUI的Slider(滑动条)件组的介绍及使用 1. 什么是Slider组件? Slider(滑动条)是Unity UGUI中的一种常用UI组件用,于在用户界面中实现滑动选择的功能.通过 ...

  3. Go 并发编程 - 并发安全(二)

    什么是并发安全 并发情况下,多个线程或协程会同时操作同一个资源,例如变量.数据结构.文件等.如果不保证并发安全,就可能导致数据竞争.脏读.脏写.死锁.活锁.饥饿等一系列并发问题,产生重大的安全隐患,比 ...

  4. C++ ASIO 实现异步套接字管理

    Boost ASIO(Asynchronous I/O)是一个用于异步I/O操作的C++库,该框架提供了一种方便的方式来处理网络通信.多线程编程和异步操作.特别适用于网络应用程序的开发,从基本的网络通 ...

  5. 面霸的自我修养:volatile专题

    王有志,一个分享硬核Java技术的互金摸鱼侠 加入Java人的提桶跑路群:共同富裕的Java人 今天是<面霸的自我修养>第4篇文章,我们一起来看看面试中会问到哪些关于volatile的问题 ...

  6. P251——用RadialGradientBrush填充椭圆,并进行RotateTransform变换

    一.认识RadialGradientBrush(径向渐变) 1.坐标 RadialGradientBrush可以用来填充矩形(正方形)和椭圆(正圆), 填充区域使用比例坐标, 椭圆的坐标(0,0)和( ...

  7. 4.Autofac依赖注入初使用

    前面几篇文章只是初步搭建项目结构,那到底能否运行呢?(能是肯定的啦) 毕竟咱都NetCore了,所以依赖注入要搞起来.专业的解释我就不多说了,很多博客文章说的很详细(其实是我忘了那些术语怎么讲). 按 ...

  8. 【c#版本Openfeign】Net8 自带OpenFeign实现远程接口调用

    引言 相信巨硬,我们便一直硬.Net版本到现在已经出了7了,8也已经在预览版了,相信在一个半月就会正式发布,其中也有很多拭目以待的新功能了,不仅仅有Apm和Tap的结合,TaskToAscynResu ...

  9. vue2实现饼图Pie组件封装

    实现如下效果: 效果展示:https://code.juejin.cn/pen/7226656439941955644 如果不会请移步到官网的栗子,请点击查看 直接给大家上代码: 整体代码片段 1 & ...

  10. Top 5 Code Smells Newbies Developers Could Easily Identify & Avoid

    Posted by Ajitesh Kumar / In Freshers, Software Quality / February 1, 2014 Following is one very pop ...