【scikit-learn基础】--『数据加载』之样本生成器
除了内置的数据集,scikit-learn
还提供了随机样本的生成器。
通过这些生成器函数,可以生成具有特定特性和分布的随机数据集,以帮助进行机器学习算法的研究、测试和比较。
目前,scikit-learn
库(v1.3.0
版)中有20个不同的生成样本的函数。
本篇重点介绍其中几个具有代表性的函数。
1. 分类聚类数据样本
分类和聚类是机器学习中使用频率最高的算法,创建各种相关的样本数据,能够帮助我们更好的试验算法。
1.1. make_blobs
这个函数通常用于可视化分类器的学习过程,它生成由聚类组成的非线性数据集。
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
X, Y = make_blobs(n_samples=1000, centers=5)
plt.scatter(X[:, 0], X[:, 1], marker="o", c=Y, s=25)
plt.show()
上面的示例生成了1000个点的数据,分为5个类别。
make_blobs
的主要参数包括:
- n_samples:生成的样本数。
- n_features:每个样本的特征数。通常为2,表示我们生成的是二维数据。
- centers:聚类的数量。即生成的样本会被分为多少类。
- cluster_std:每个聚类的标准差。这决定了聚类的形状和大小。
- shuffle:是否在生成数据后打乱样本。
- random_state:随机数生成器的种子。这确保了每次运行代码时生成的数据集都是一样的。
1.2. make_classification
这是一个用于生成复杂二维数据的函数,通常用于可视化分类器的学习过程或者测试机器学习算法的性能。
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification
X, Y = make_classification(n_samples=100, n_classes=4, n_clusters_per_class=1)
plt.scatter(X[:, 0], X[:, 1], marker="o", c=Y, s=25)
plt.show()
可以看出它生成的各类数据交织在一起,很难做线性的分类。
make_classification
的主要参数包括:
- n_samples:生成的样本数。
- n_features:每个样本的特征数。这个参数决定了生成的数据集的维度。
- n_informative:具有信息量的特征的数量。这个参数决定了特征集中的特征有多少是有助于分类的。
- n_redundant:冗余特征的数量。这个参数决定了特征集中的特征有多少是重复或者没有信息的。
- random_state:随机数生成器的种子。这确保了每次运行代码时生成的数据集都是一样的。
1.3. make_moons
和函数名称所表达的一样,它是一个用于生成形状类似于月牙的数据集的函数,通常用于可视化分类器的学习过程或者测试机器学习算法的性能。
from sklearn.datasets import make_moons
fig, ax = plt.subplots(1, 3)
fig.set_size_inches(9, 3)
X, Y = make_moons(noise=0.01, n_samples=1000)
ax[0].scatter(X[:, 0], X[:, 1], marker="o", c=Y, s=25)
ax[0].set_title("noise=0.01")
X, Y = make_moons(noise=0.05, n_samples=1000)
ax[1].scatter(X[:, 0], X[:, 1], marker="o", c=Y, s=25)
ax[1].set_title("noise=0.05")
X, Y = make_moons(noise=0.5, n_samples=1000)
ax[2].scatter(X[:, 0], X[:, 1], marker="o", c=Y, s=25)
ax[2].set_title("noise=0.5")
plt.show()
noise
越小,数据的分类越明显。
make_moons
的主要参数包括:
- n_samples:生成的样本数。
- noise:在数据集中添加的噪声的标准差。这个参数决定了月牙的噪声程度。
- random_state:随机数生成器的种子。这确保了每次运行代码时生成的数据集都是一样的。
2. 回归数据样本
除了分类和聚类,回归是机器学习的另一个重要方向。scikit-learn
同样也提供了创建回归数据样本的函数。
from sklearn.datasets import make_regression
fig, ax = plt.subplots(1, 3)
fig.set_size_inches(9, 3)
X, y = make_regression(n_samples=100, n_features=1, noise=20)
ax[0].scatter(X[:, 0], y, marker="o")
ax[0].set_title("noise=20")
X, y = make_regression(n_samples=100, n_features=1, noise=10)
ax[1].scatter(X[:, 0], y, marker="o")
ax[1].set_title("noise=10")
X, y = make_regression(n_samples=100, n_features=1, noise=1)
ax[2].scatter(X[:, 0], y, marker="o")
ax[2].set_title("noise=1")
plt.show()
通过调节noise
参数,可以创建不同精确度的回归数据。
make_regression
的主要参数包括:
- n_samples:生成的样本数。
- n_features:每个样本的特征数。通常为一个较小的值,表示我们生成的是一维数据。
- noise:噪音的大小。它为数据添加一些随机噪声,以使结果更接近现实情况。
3. 流形数据样本
所谓流形数据,就是S形或者瑞士卷那样旋转的数据,可以用来测试更复杂的分类模型的效果。
比如下面的make_s_curve
函数,就可以创建S形的数据:
from sklearn.datasets import make_s_curve
X, Y = make_s_curve(n_samples=2000)
fig, ax = plt.subplots(subplot_kw={"projection": "3d"})
fig.set_size_inches((8, 8))
ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=Y, s=60, alpha=0.8)
ax.view_init(azim=-60, elev=9)
plt.show()
4. 总结
本文介绍的生成样本数据的函数只是scikit-learn
库中各种生成器的一部分,
还有很多种其他的生成器函数可以生成更加复杂的样本数据。
所有的生成器函数请参考文档:
https://scikit-learn.org/stable/modules/classes.html#samples-generator
【scikit-learn基础】--『数据加载』之样本生成器的更多相关文章
- Python 数据分析(一) 本实验将学习 pandas 基础,数据加载、存储与文件格式,数据规整化,绘图和可视化的知识
第1节 pandas 回顾 第2节 读写文本格式的数据 第3节 使用 HTML 和 Web API 第4节 使用数据库 第5节 合并数据集 第6节 重塑和轴向旋转 第7节 数据转换 第8节 字符串操作 ...
- odoo基础数据加载
odoo 基础数据加载 这里介绍的odoo基础数据加载分两种方式,一种是演示数据加载,一种是默认数据加载,下面就是详细介绍 首先,当然是创建一个date文件夹 项目目录,右键自定义一个文件夹 XML数 ...
- transformers 之Trainer对应的数据加载
基础信息说明 本文以Seq2SeqTrainer作为实例,来讨论其模型训练时的数据加载方式 预训练模型:opus-mt-en-zh 数据集:本地数据集 任务:en-zh 机器翻译 数据加载 Train ...
- ScrollView嵌套ListView,GridView数据加载不全问题的解决
我们大家都知道ListView,GridView加载数据项,如果数据项过多时,就会显示滚动条.ScrollView组件里面只能包含一个组件,当ScrollView里面嵌套listView,GridVi ...
- python多种格式数据加载、处理与存储
多种格式数据加载.处理与存储 实际的场景中,我们会在不同的地方遇到各种不同的数据格式(比如大家熟悉的csv与txt,比如网页HTML格式,比如XML格式),我们来一起看看python如何和这些格式的数 ...
- flask+sqlite3+echarts3+ajax 异步数据加载
结构: /www | |-- /static |....|-- jquery-3.1.1.js |....|-- echarts.js(echarts3是单文件!!) | |-- /templates ...
- Entity Framework关联查询以及数据加载(延迟加载,预加载)
数据加载分为延迟加载和预加载 EF的关联实体加载有三种方式:Lazy Loading,Eager Loading,Explicit Loading,其中Lazy Loading和Explicit Lo ...
- JQuery插件:遮罩+数据加载中。。。(特点:遮你想遮,罩你想罩)
在很多项目中都会涉及到数据加载.数据加载有时可能会是2-3秒,为了给一个友好的提示,一般都会给一个[数据加载中...]的提示.今天就做了一个这样的提示框. 先去jQuery官网看看怎么写jQuery插 ...
- 如何评估ETL的数据加载时间
简述如何评估大型ETL数据加载时间. 答:评估一个大型的ETL的数据加载时间是一件很复杂的事情.数据加载分为两类,一类是初次加载,另一类是增量加载. 在数据仓库正式投入使用时,需要进行一次初次加载,而 ...
- 浅谈Entity Framework中的数据加载方式
如果你还没有接触过或者根本不了解什么是Entity Framework,那么请看这里http://www.entityframeworktutorial.net/EntityFramework-Arc ...
随机推荐
- virtualbox克隆虚拟机
1.选择要克隆的虚拟机 2.设置克隆机的名称和存放位置 3.选择克隆类型 4.克隆结果
- Programming abstractions in C阅读笔记:p123-p126
<Programming Abstractions In C>学习第50天,p123-p126,总结如下: 一.技术总结 1.notaion 这也是一个在计算机相关书籍中出现的词,但有时却 ...
- 使用 KubeBlocks 为 K8s 提供稳如老狗的数据库服务
原文链接:https://forum.laf.run/d/994 大家好!今天这篇文章主要向大家介绍 Sealos 的数据库服务.在 Sealos 上数据库后端服务由 KubeBlocks 提供,为用 ...
- ChatGPT大师班 从入门到精通 视频教程 完整版
本内容收集于:AIGC从入门到精通教程汇总 课程截图 课程目录 01.先导课:工具篇----ChatGPT平替解决方案及汉化教程.mp4 02.第1课:AIGC时代的到来.mp4 03.第2课:认识C ...
- CodeForces-1324D-Pair-of-Topics
题意 对于两个长度为\(n\)的数组\(a[]\)和\(b[]\),找到有多少对\(i\)和\(j\)\((i<j)\),满足\(a_i+a_j>b_i+b_j\) 分析 首先发现如果\( ...
- WebAssembly实践指南——C++和Rust通过wasmtime实现相互调用实例
C++和Rust通过wasmtime实现相互调用实例 1 wasmtime介绍 wasmtime是一个可以运行WebAssembly代码的运行时环境. WebAssembly是一种可移植的二进制指令集 ...
- 基于 Wiki.js 搭建知识库系统
前言 本文介绍如何使用 Wiki.js 搭建知识库系统. Wiki.js 官网 安装 前提准备 Wiki.js 几乎可以在任何支持 Node.js 的系统上运行.它可以运行在 Linux .Windo ...
- mpi转以太网连接300PLC实现以太网通信配置方法
西门子S7300PLC连接MPI-ETH-XD1.0实现以太网通信配置方法 产品简介 兴达易控MPI-ETH-XD1.0用于西门子S7-200/SMART S7-200/S7-300/S7-400/西 ...
- Python面向对象——封装
文章目录 内容回顾 封装 为何要隐藏? 作业 内容回顾 上节课复习: 1.编程范式/思想 面向过程 介绍: 核心是"过程"二字 过程就是"流水线" 过程终极奥义 ...
- 基于 Canal 设计可扩展、高可用 binlog 同步集群
问题 https://github.com/alibaba/canal binlog 同步组件,canal 使用是比较广泛的,canal 逻辑架构如图: 部署架构如图: canal 基于主从模式,任务 ...