传送门

Description

Little Chris is very keen on his toy blocks. His teacher, however, wants Chris to solve more problems, so he decided to play a trick on Chris.

There are exactly s blocks in Chris's set, each block has a unique number from 1 to s. Chris's teacher picks a subset of blocks X and keeps it to himself. He will give them back only if Chris can pick such a non-empty subset Y from the remaining blocks, that the equality holds:

"Are you kidding me?", asks Chris.

For example, consider a case where s = 8 and Chris's teacher took the blocks with numbers 1, 4 and 5. One way for Chris to choose a set is to pick the blocks with numbers 3 and 6, see figure. Then the required sums would be equal: (1 - 1) + (4 - 1) + (5 - 1) = (8 - 3) + (8 - 6) = 7.

However, now Chris has exactly s = 106 blocks. Given the set X of blocks his teacher chooses, help Chris to find the required set Y!

Input

The first line of input contains a single integer n (1 ≤ n ≤ 5·105), the number of blocks in the set X. The next line contains n distinct space-separated integers x1, x2, ..., xn (1 ≤ xi ≤ 106), the numbers of the blocks in X.

Note: since the size of the input and output could be very large, don't use slow output techniques in your language. For example, do not use input and output streams (cin, cout) in C++.

Output

In the first line of output print a single integer m (1 ≤ m ≤ 106 - n), the number of blocks in the set Y. In the next line output m distinct space-separated integers y1, y2, ..., ym (1 ≤ yi ≤ 106), such that the required equality holds. The sets X and Y should not intersect, i.e. xi ≠ yj for all ij (1 ≤ i ≤ n; 1 ≤ j ≤ m). It is guaranteed that at least one solution always exists. If there are multiple solutions, output any of them.

Sample Input

31 4 5
11

Sample Output

2999993 1000000
11000000 

思路

题意:

从 1 ~ 1000000 中选择 n 个数:x1,x2,...,xn,对 x1-1,x2-1,...xn-1 求和得s1。然后在 1 ~ 1000000 中除已经选择过的n个数中选择一些数,假设为y1, y2,...ym,设s = 1000000,对s-y1,s-y2,...,s-ym求和,如果这个和与s1相等,则输出y1,y2,...,ym

题解:

换个角度思考,由于集合X中:x1,x2,...,xn 是各不相同的,那么在S - X,设为Y(假定S是全集:1,2,...,n)对每个数xi(i : 1 ~ n)一定有相应的s-i+1与之对应(前提是,如果S-xi不在集合X中);如果有相应的s-xi+1在X中,那么可以找没有选择过的yj,s-yj+1来替换xi, s-xi+1。例如X中有 100, 999901而没有99, 999902,那么可以选择99, 999902来替代。效果是相同的。这样Y中的数量跟n是相同的。

官方题解:

Let's define the symmetric number of k to be s + 1 - k. Since in this case s is an even number, k ≠ s - k.

Note that (k - 1) + (s + 1 - k) = s, i.e., the sum of a number and its symmetric is always s. Let's process the given members x of X. There can be two cases:

  1. If the symmetric of x does not belong to X, we add it to Y. Both give equal values to the respective sums: x - 1 = s - (s + 1 - x).
  2. The symmetric of x belongs to X. Then we pick any y that neither y and symmetric of y belong to X, and add them to Y. Both pairs give equal values to the respective sums, namely s.

How to prove that in the second step we can always find such y? Let the number of symmetric pairs that were processed in the step 1 be a, then there remain  other pairs. Among them, for  pairs both members belong to X, and for other pairs none of the members belong to X. To be able to pick the same number of pairs for Y, as there are in X, we should have

which is equivalent to  , as given in the statement.

Solution complexity: O(s) / O(n).

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn = 1000000;
int vis[1000005];

int main()
{
	int N;
	while (~scanf("%d",&N))
	{
		memset(vis,0,sizeof(vis));
		int tmp,cnt = 0;
		bool first = true;
		for (int i = 0;i < N;i++)
		{
			scanf("%d",&tmp);
			vis[tmp] = 1;
		}
		printf("%d\n",N);
		for (int i = 1;i <= maxn;i++)
		{
			if (vis[i] && !vis[maxn+1-i])
			{
				first?printf("%d",maxn+1-i):printf(" %d",maxn+1-i);
				first = false;
				cnt++;
			}
		}
		for (int i = 1;i <= maxn && cnt != N;i++)
		{
			if (!vis[i] && !vis[maxn+1-i])
			{
				printf(" %d %d",i,maxn+1-i);
				cnt += 2;
			}
		}
		printf("\n");
	}
	return 0;
}

  

Codeforces Round #238 (Div. 2) D. Toy Sum(想法题)的更多相关文章

  1. Codeforces Round #238 (Div. 2) D. Toy Sum 暴搜

    题目链接: 题目 D. Toy Sum time limit per test:1 second memory limit per test:256 megabytes 问题描述 Little Chr ...

  2. Codeforces Round #238 (Div. 2) D. Toy Sum

    D. Toy Sum   time limit per test:1 second memory limit per test:256 megabytes input:standard input o ...

  3. Codeforces Round #303 (Div. 2) A. Toy Cars 水题

     A. Toy Cars Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/545/problem ...

  4. 水题 Codeforces Round #303 (Div. 2) A. Toy Cars

    题目传送门 /* 题意:5种情况对应对应第i或j辆车翻了没 水题:其实就看对角线的上半边就可以了,vis判断,可惜WA了一次 3: if both cars turned over during th ...

  5. Codeforces Round #556 (Div. 2) - C. Prefix Sum Primes(思维)

    Problem  Codeforces Round #556 (Div. 2) - D. Three Religions Time Limit: 1000 mSec Problem Descripti ...

  6. Codeforces Round #575 (Div. 3) 昨天的div3 补题

    Codeforces Round #575 (Div. 3) 这个div3打的太差了,心态都崩了. B. Odd Sum Segments B 题我就想了很久,这个题目我是找的奇数的个数,因为奇数想分 ...

  7. Codeforces Round #367 (Div. 2) A. Beru-taxi (水题)

    Beru-taxi 题目链接: http://codeforces.com/contest/706/problem/A Description Vasiliy lives at point (a, b ...

  8. Codeforces Round #238 (Div. 1)

    感觉这场题目有种似曾相识感觉,C题还没看,日后补上.一定要坚持做下去. A Unusual Product 题意: 给定一个n*n的01矩阵,3种操作, 1 i 将第i行翻转 2 i 将第i列翻转 3 ...

  9. Codeforces Round #334 (Div. 2) A. Uncowed Forces 水题

    A. Uncowed Forces Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/604/pro ...

随机推荐

  1. Java中的序列化Serialable高级详解

    来自[http://blog.csdn.net/jiangwei0910410003/article/details/18989711] 引言 将 Java 对象序列化为二进制文件的 Java 序列化 ...

  2. (转)CNBLOG离线Blog发布方法

    原文章路径:http://www.cnblogs.com/liuxianan/archive/2013/04/13/3018732.html (新添了插件路径) 去年就知道有这个功能,不过没去深究总结 ...

  3. Postgresql扩展及UUID

    切换数据库 \connect $DBNAME 查看Postgresql的可用扩展 SELECT * FROM pg_available_extensions; 安装所需扩展 CREATE EXTENS ...

  4. Java中的static关键字解析

    Java中的static关键字解析 static关键字是很多朋友在编写代码和阅读代码时碰到的比较难以理解的一个关键字,也是各大公司的面试官喜欢在面试时问到的知识点之一.下面就先讲述一下static关键 ...

  5. Java程序设计之裴波拉切那数列(兔子一年的数量)

    题目:古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少? 1.程序分析: 兔子的规律为数列1,1,2,3,5 ...

  6. [luogu2964][USACO09NOV][硬币的游戏A Coin Game] (博弈+动态规划)

    题目描述 Farmer John's cows like to play coin games so FJ has invented with a new two-player coin game c ...

  7. HAOI2015 泛做

    T1 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白色.将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间的 ...

  8. usb驱动开发之大结局

    从usb总线的那个match函数usb_device_match()开始到现在,遇到了设备,遇到了设备驱动,遇到了接口,也遇到了接口驱动,期间还多次遇到usb_device_match(),又多次与它 ...

  9. 【C#】【Thread】Barrier任务并行

    Barrier  是一个对象,它可以在并行操作中的所有任务都达到相应的关卡之前,阻止各个任务继续执行. 如果并行操作是分阶段执行的,并且每一阶段要求各任务之间进行同步,则可以使用该对象. --MSDN ...

  10. ConcurrentHashMap和HashMap的一点区别

    HashMap不是线程安全的,ConcurrentHashMap则在某一个方法的执行上是线程安全的. package testMap; import java.util.HashMap; public ...