1、基本信息

题目:使用马尔科夫场实现基于超像素的RGB-D图像分割;

作者所属:Ferdowsi University of Mashhad(Iron)

发表:2015 International Symposium on Artificial Intelligence and Signal Processing (AISP)

关键词:微软Kinect传感器;RGB-D图像分割;MRF;法向量

2、摘要

针对问题:能量最小化;

使用场景:室内场景标签问题(分割、分类等);

主要数据:微软Kinect获得的带有距离信息的图像数据;

主要方法:基于色彩和距离变化对原图进行超像素预处理,使用图像模型处理超像素块,并用MRF推断得到最后的标签结果;

主要结果:NYU的数据,效果更好;

可取与差异:图像模型如何套用在预处理结果的,以及MRF的带入?SAR图像可以得到距离信息,但是否有必要?效率和质量上有没有可取之处?

3、Introduction

--distance,距离因素相比其他rgb等信息,收到的干扰要小/少一点;同样也是因为运用了距离信息进行了超像素预处理(当然也用了色彩的信息),比其他效果要好;

--本文把分割问题看作是一个随机优化问题(另一种常见的看法是该问题是一个确定的优化问题);

--随机优化又有两种模型:图像模型和其他非图像的模型(用参数或非参的方法得到后延概率);本文使用著名的后验概率图像模型——MRF——来最小化势能量函数,以得到每个超像素的全局的最优标签;

4、Related works

略。(与自己研究相关的少,主要是3D图像的处理问题,针对性太强,适用面窄,又需要再看吧)

5、MRF

--labeling问题:最大化后验概率p(L|f),在f特征下的L的最大化——》利用贝叶斯公式,得到=p(f|L)*P(L)/P(f),P(f)是个常数,分析中可以忽略掉;P(f|L)等于是似然函数,P(L)用gibbs分布等于到u能量函数,再变为势函数——》所以,标签问题由求标签的最大后验概率,变为求最小势能函数之和(或最小能量函数,这就是个名字)——》若后验概率假设是高斯分布的,得到式子后,v变为potts模型(似乎是本文采用的模型)

--这里,最后的势函数是所谓的order2势函数,反应了图中相邻标签的关系;之前的势函数反应的是单一像素/超像素在图中的关系。(?)

6、三边的深度去噪(?)

提出了一种针对性的去噪方法,但没怎么看懂——不过自己的研究中,因为针对的是高分辨率的图像,且强调速度的实现,这里跳过。

7、Proposed Method

7.1 超像素提取方法

--是很重要的一步,影响最终结果很多(同);

--针对labcie彩色空间的canny边缘检测方法和针对深度(距离)信息的相邻像素法向量的cos夹角方法;

--也就是说,文中是用这两种边缘检测方法得到边缘,然后将得到的分割后的块作为下一步处理的超像素(也就是说,大小形状不定);(这里倒是提供了一种超像素的思路,由边缘检测等其他方法得到,自己定义超像素亦可,只要服务于我!!)

7.2 能量函数(?)

--这里没有太懂:order3势函数也有了,表示两个相邻像素的order2势函数的集合(?);

7.3 最小化(势函数)方法

--已经有很多(成熟的)方法:ICM,Graph Cut,梯度下降,a-expansion, a-beta-swap and message passing based method;

--本文采用的是一种MRF方法,具体是把原始问题分解为sub(亚)问题——变成主从系列的问题,仆一个一个解决,让主不断更新到最后的结果;起了个算法名字:快速原始对偶算法(Fast Primal Dual Algorithm);

8、实验结果

--具体的就不多说了,毕竟不是很一样,谈谈可取之处;

--数量:30个场景/图片;

--评判方法:与the Hoover method对比(公认的一些方法),以及其他成熟方法;三个指标(correct detection,noise instances,missed instances)作图展示!

9、Conclusion

--利用几何信息(这里特指深度/距离信息)增强分割结果;

--具体实现的方法是利用MRF原理,把信息“加载”到能量函数中去;

--在预处理阶段(得到超像素),利用了彩色边缘和几何(深度)边缘来做检测的;

--适用于high level图像处理问题,以及机器人导航问题(用kniect);

10、Future works

--更好的分割结果;

--现有或前次分割结果的利用;每次迭代后标签的反馈信息;

11、参考文献

[9] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurélien Lucchi,Pascal Fua, Sabine Süsstrunk: S L IC Superpixels Compared to Stateof-the-Art Superpixel Methods. IEEE Trans. Pattern Anal. Mach.Intell. 34(11): 2274-2282 (2012).

[31] Komodakis, N., Paragios, N., Tziritas, G., "MRF Energy Minimization and Beyond via Dual Decomposition," Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol.33, no.3,pp.531,552, March 2011.

[32] Chaohui Wang, Nikos Komodakis, Nikos Paragios, "Markov Random Field modeling, inference & learning in computer vision ; image understanding", A survey, Computer Vision and Image Understanding, Volume 117, Issue 11, Pages 1610-1627, ISSN 1077-3142, 2013.94

12、个人总结

--获得超像素的方法,不死板,对超像素定义的理解更深入;

--运用MRF的能量函数的变化,来实现所谓的“基于”;

--没有讲具体怎么实现的问题由大化小的,对超像素块的操纵还是不灵光...

Superpixel Based RGB-D Image Segmentation Using Markov Random Field——阅读笔记的更多相关文章

  1. 马尔科夫随机场(Markov Random Field)

    马尔可夫随机场(Markov Random Field),它包含两层意思:一是什么是马尔可夫,二是什么是随机场. 马尔可夫过程可以理解为其当前的状态只与上一刻有关而与以前的是没有关系的.X(t+1)= ...

  2. Dostoevsky: Better Space-Time Trade-Offs for LSM-Tree Based Key-Value Stores via Adaptive Removal of Superfluous Merging 阅读笔记

    Introduction 主流的基于LSM树的KV存储都在两方面进行权衡,一方面是写入更新的开销,另一方面是查询和存储空间的开销.但它们都不是最优的,问题在于这些存储系统在LSM树的每一个level上 ...

  3. Markov Random Fields

    We have seen that directed graphical models specify a factorization of the joint distribution over a ...

  4. 个性探测综述阅读笔记——Recent trends in deep learning based personality detection

    目录 abstract 1. introduction 1.1 个性衡量方法 1.2 应用前景 1.3 伦理道德 2. Related works 3. Baseline methods 3.1 文本 ...

  5. 马尔可夫随机场(Markov random fields) 概率无向图模型 马尔科夫网(Markov network)

    上面两篇博客,解释了概率有向图(贝叶斯网),和用其解释条件独立.本篇将研究马尔可夫随机场(Markov random fields),也叫无向图模型,或称为马尔科夫网(Markov network) ...

  6. Adversarial Examples for Semantic Segmentation and Object Detection 阅读笔记

    Adversarial Examples for Semantic Segmentation and Object Detection (语义分割和目标检测中的对抗样本) 作者:Cihang Xie, ...

  7. 论文阅读笔记二十四:Rich feature hierarchies for accurate object detection and semantic segmentation Tech report(R-CNN CVPR2014)

    论文源址:http://www.cs.berkeley.edu/~rbg/#girshick2014rcnn 摘要 在PASCAL VOC数据集上,最好的方法的思路是将低级信息与较高层次的上下文信息进 ...

  8. 论文阅读笔记二十二:End-to-End Instance Segmentation with Recurrent Attention(CVPR2017)

    论文源址:https://arxiv.org/abs/1605.09410 tensorflow 代码:https://github.com/renmengye/rec-attend-public 摘 ...

  9. 论文阅读笔记十七:RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation(CVPR2017)

    论文源址:https://arxiv.org/abs/1611.06612 tensorflow代码:https://github.com/eragonruan/refinenet-image-seg ...

随机推荐

  1. Vue.js – 基于 MVVM 实现交互式的 Web 界面

    Vue.js 是用于构建交互式的 Web  界面的库.它提供了 MVVM 数据绑定和一个可组合的组件系统,具有简单.灵活的 API.从技术上讲, Vue.js 集中在 MVVM 模式上的视图模型层,并 ...

  2. 25款创新的 PSD 格式搜索框设计素材【免费下载】

    这一次,我们给大家带来的素材是25款很有吸引力的搜索框 PSD 设计,你可以免费下载使用.有时候,搜索框容易被访客忽视,因为其简单和没有吸引力的设计.如果这是你所面对的问题,那么我们会鼓励你去看看在这 ...

  3. Chance – 功能强大的 JavaScript 随机数生成类库

    Chance 是一个基于 JavaScript 的随机数工具类.可以生成随机数字,名称,地址,域名,邮箱,时间等等,几乎网站中使用的任何形式的内容都能够生成.这个随机数工具可以帮助减少单调的测试数据编 ...

  4. Tabio – 轻松,高效的管理 Chrome 标签页

    Tabio 是一个 Chrome 扩展,旨在简化大量浏览器标签页的管理.它提供的搜索功能允许您快速.轻松地找到您需要的选项卡.Tabio 便于组织你的标签,简单的拖拽排序.您也可以使用输入.删除和箭头 ...

  5. [deviceone开发]-do_Viewshower的动画效果示例

    一.简介 do_Viewshower组件也支持View之间的过场动画,支持大概12种,这个示例随机的切换12种动画中的一种,而且每次切换的动画时间不一样.直观的展示12种动画的效果.适合初学者. 二. ...

  6. ArcCatalog中连接SDE数据库

    描述 在ArcCatalog采用直接的方式连接SDE数据库时,无论怎样填写连接参数,都连接不上(数据库管理工具和代码都可以连).主要报两类错误: Error:ORA-12154:TNS:无法解析指定的 ...

  7. 在SSRS 里实现 SUMIF

    最近在做报表时,要实现Excel中的SUMIF的功能, 示例:SUMIF($B$2:$B$465,"East",$G$2:$G$465),即汇总B列值等于East的G列值. 在SS ...

  8. web service上传参数代码实例

    web service上传参数代码实例 这次做的项目用到webservice比较多,最开始在网上看的参考dome,发现都不行,后来发现安卓4.0以后有很大的不同,在做传参时,有些东西需要注意: 第一, ...

  9. [Android]proguard重新编译和如何不混淆第三方jar包

    转载自:http://glblong.blog.51cto.com/3058613/1536516 一.ant安装.环境变量配置及验证 (一)安装ant 到官方主页http://ant.apache. ...

  10. MVC3异常处理的方法

    1.采用内置的HandleErrorAttribute对象,跳转到指定错误页 示例:http://www.cnblogs.com/TomXu/archive/2011/12/15/2285432.ht ...