Description

  作为体育委员,C君负责这次运动会仪仗队的训练。仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图)。       现在,C君希望你告诉他队伍整齐时能看到的学生人数。

Input

  共一个数N。

Output

  共一个数,即C君应看到的学生人数。

Sample Input

  4

Sample Output

  9

HINT

【数据规模和约定】   对于 100% 的数据,1 ≤ N ≤ 40000

Source

思路:看图,是对称的,以对角线为对称轴分开,先不看特殊的三个点,计算发现行上的点满足欧拉函数,于是线性筛求2~n-1欧拉函数即可,最后别忘了对称和特殊的三个点。时间10sec不线性筛也行?
 #include <iostream>
#include <cstdio>
#include <cstring>
#define N 40000
using namespace std;
int flag[N+],prime[N+],phi[N+];
int n,ans;
void erphi()
{
int k=;
memset(flag,,sizeof(flag));
for (int i=;i<=n;i++)
{
if (!flag[i]) prime[k++]=i,phi[i]=i-;
for (int j=;j<k&&i*prime[j]<n;j++)
{
flag[i*prime[j]]=true;
if (i%prime[j]==)
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
else phi[i*prime[j]]=phi[i]*(prime[j]-);
}
}
return;
}
int main()
{
scanf("%d",&n);
erphi();
for (int i=;i<n;i++)
ans+=phi[i];
printf("%d\n",ans*+);
return ;
}

【BZOJ2190】【SDOI2008】仪仗队的更多相关文章

  1. P2158/bzoj2190 [SDOI2008]仪仗队

    P2158 [SDOI2008]仪仗队 欧拉函数 计算下三角的点数再*2+1 观察斜率,自行体会 #include<iostream> #include<cstdio> #in ...

  2. bzoj2190: [SDOI2008]仪仗队(欧拉)

    2190: [SDOI2008]仪仗队 题目:传送门 题解: 跟着企鹅大佬做题! 自己瞎搞搞就OK,不难发现,如果以C作为原点建立平面直角坐标系,那么在这个坐标系中,坐标为(x,y)且GCD(x,y) ...

  3. BZOJ2190: [SDOI2008]仪仗队

    Description 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是 ...

  4. BZOJ2190 [SDOI2008]仪仗队 [欧拉函数]

    题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...

  5. bzoj2190 [SDOI2008]仪仗队 - 筛法 - 欧拉函数

    作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图).    ...

  6. BZOJ2190 [SDOI2008]仪仗队(欧拉函数)

    与HDU2841大同小异. 设左下角的点为(1,1),如果(1,1)->(x,y)和(1,1)->(x',y')向量平行,那只有在前面的能被看见.然后就是求x-1.y-1不互质的数对个数. ...

  7. 【数论】【欧拉函数】bzoj2190 [SDOI2008]仪仗队

    由图可知,一个人无法被看到时,当且仅当有 人与原点 的斜率与他相同,且在他之前. ∴一个人可以被看到,设其斜率为y/x,当且仅当y/x不可再约分,即gcd(x,y)=1. 考虑将图按对角线划分开,两部 ...

  8. [bzoj2190][SDOI2008]仪仗队 ——欧拉函数

    题解 以c点为(0, 0)建立坐标系,可以发现, 当(x,y)!=1,即x,y不互素时,(x,y)点一定会被点(x/n, y/n)遮挡. 所以点(x, y)被看到的充分必要条件是Gcd(x, y) = ...

  9. [BZOJ2190][SDOI2008]仪仗队 数学

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2190 看到这道题首先想到了NOI2010的能量采集,这不就是赤裸裸的弱化版吗?直接上莫比乌 ...

  10. BZOJ2190 SDOI2008 仪仗队 gcd,欧拉函数

    题意:求从左下角能看到的元素个数 引理:对点(x,y),连线(0,0)-(x,y),元素个数为gcd(x,y)-1(中间元素) 即要求gcd(x,y)=1 求gcd(x,y)=1的个数 转化为2 \s ...

随机推荐

  1. 在Eclipse中自定义类似syso的快捷代码模板

    sysout/syso syserr/ syse 点击菜单栏的“Window”->“Preferences”,打开“Preferences”对话框.在Preferences”对话框中点击“Jav ...

  2. NBU expired Media,Media ID not found in EMM database

    Subject:When attempting to expire a media in Veritas NetBackup (tm) 6.0 with the bpexpdate command, ...

  3. golang debug with LiteIDE

    golang 的调试比较麻烦,debug stop into 无法跳转到自己写的代码,但是能够跳转到系统提供的代码. 以下是简单的测试代码: package main import ( "f ...

  4. 深入分析JavaWeb 技术内幕

    1,通过浏览器请求一个资源,会发生以下几种过程 1) http的解析过程,包括对于http请求头和响应头中指令(控制用户浏览器的渲染行为和 服务器的执行逻辑)的解析 2)DNS的解析过程(根据域名获取 ...

  5. 计算第K个素数

    暂时没有时间整理,先放在这里: http://www.quora.com/Prime-Numbers/What-are-good-ways-to-find-nth-prime-number-in-th ...

  6. JQuery.Ajax()的data参数类型

    假如现在有这样一个表单,是添加元素用的. <form id='addForm' action='UserAdd.action' type='post'> <label for='un ...

  7. 【SSH】 之 Struts2

    (一)Struts2是什么? Struts2是一个基于MVC设计模式的Web应用框架,它本质上相当于一个servlet,在MVC设计模式中,Struts2作为控制器(Controller)来建立模型与 ...

  8. 【myEcplise2015 更换主题+字体颜色】

    更换myEcplise样式: 若对js文件或者java文件中的字体颜色不是很满意,可以去按照这个路径去更新字体颜色: 以javaScript文件为例子: 修改完成之后,javascript文件中文字是 ...

  9. UVA 1314 最小表示法

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=36117 题意:给定长度为n的字符串,求一个起点使字符串从该起点起的 ...

  10. 《DSP using MATLAB》示例Example4.2