题意:数列A1,A2,...,AN,修改最少的数字,使得数列严格单调递增。(1<=N<=10^5; 1<=Ai<=10^9 )

思路:首先要明白的一点是数列是严格单调递增,那么没有修改的最长上升子序列也是严格单调递增的,并且是满足要求的。

何为满足要求? 假设A(a)---B(b)---C(c)……是一个符合要求的不修改序列,括号内为下标,那么有B-A>=b-a,这样才能满足夹在中间的数能够修改。

那么本题在nlogn求最长上升子序列的基础做一些处理即可。

处于满足的序列中必须有a[i]-lis[x]-1>=i-pos[x]-1,并且替换的时候不是原来的找到大于这个值的最小的,而是找满足前面这个式子已求序列中最大的。

比如序列:1 3 6 6 13 2 8 9 10,求最长上升子序列过程中当求得的序列为 1 3 6 13 时,当遇见8时,我们不是变为1 3 6 8,而是变成1 3 8, 因为只有这样才是满足条件的,当时它的最长序列top=4不会变化。

还要注意的一点是lis[0]初始化为-oo,因为a[i]可以修改为负数。

 #include<cstdio>
#include<iostream>
using namespace std; const int maxn=;
const int oo=0x3fffffff;
int a[maxn];
int lis[maxn], pos[maxn]; int main()
{
int n;
while(cin >> n)
{
for(int i=; i<=n; i++) scanf("%d",a+i);
int top=;
lis[]=-oo;
for(int i=; i<=n; i++)
{
if(a[i]>lis[top]&&a[i]-lis[top]->=i-pos[top]-)
{
lis[++top]=a[i];
pos[top]=i;
}
else
{
int l=, r=top, tp=-;
while(l<=r)
{
int mid=(l+r)>>;
if(a[i]-lis[mid]->=i-pos[mid]-)
{
tp=mid;
l=mid+;
}
else r=mid-;
}
if(tp!=-) lis[tp+]=a[i], pos[tp+]=i;
}
}
cout << n-top <<endl;
}
return ;
}
/*
5
1 6 6 7 8
7
1 2 2 2 2 2 7
9
1 3 6 6 13 2 8 9 10
13
1 2 2 3 10 6 6 6 6 6 7 8 9
11
1 2 3 4 10 10 7 8 9 10 10
*/

满足要求的最长上升子序列(nlogn)的更多相关文章

  1. HDU 1025 Constructing Roads In JGShining's Kingdom(求最长上升子序列nlogn算法)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1025 解题报告:先把输入按照r从小到大的顺序排个序,然后就转化成了求p的最长上升子序列问题了,当然按p ...

  2. 【算法】最长公共子序列(nlogn)

    转载注明出处:http://blog.csdn.net/wdq347/article/details/9001005 (修正了一些错误,并自己重写了代码) 最长公共子序列(LCS)最常见的算法是时间复 ...

  3. [poj 1533]最长上升子序列nlogn树状数组

    题目链接:http://poj.org/problem?id=2533 其实这个题的数据范围n^2都可以过,只是为了练习一下nlogn的写法. 最长上升子序列的nlogn写法有两种,一种是变形的dp, ...

  4. HDU5748---(记录每个元素的 最长上升子序列 nlogn)

    分析: 给一个序列,求出每个位置结尾的最长上升子序列 O(n^2) 超时 #include "cstdio" #include "algorithm" #def ...

  5. 最长公共子序列 nlogn

    先来个板子 #include<bits/stdc++.h> using namespace std; , M = 1e6+, mod = 1e9+, inf = 1e9+; typedef ...

  6. DP练习 最长上升子序列nlogn解法

    openjudge 百练 2757:最长上升子序列 总时间限制:  2000ms 内存限制:  65536kB 描述 一个数的序列bi,当b1 < b2 < ... < bS的时候, ...

  7. NYOJ 214 最长上升子序列nlogn

    普通的思路是O(n2)的复杂度,这个题的数据量太大,超时,这时候就得用nlogn的复杂度的算法来做,这个算法的主要思想是只保存有效的序列,即最大递增子序列,然后最后得到数组的长度就是最大子序列.比如序 ...

  8. 最长上升子序列nlogn算法

    LIS问题是经典的动态规划问题,它的状态转移相信大家都很熟悉: f[i] = f[k] + 1  (k < i 且 A[k] < A[i]) 显然这样做复杂度是O(n^2) 有没有更快的算 ...

  9. 最长递增子序列nlogn的做法

    费了好大劲写完的  用线段树维护的 nlogn的做法再看了一下 大神们写的 nlogn  额差的好远我写的又多又慢  大神们写的又少又快时间  空间  代码量 哪个都赶不上大佬们的代码 //这是我写的 ...

  10. hdu1950 最长上升子序列nlogn

    简单. #include<cstdio> #include<cstring> #include<iostream> using namespace std; ; i ...

随机推荐

  1. 【File】递归删除文件夹中子级文件/夹,并删除文件夹

    今天有这样一个需求,需要删除某一个文件夹,但是文件夹中还有子级的文件 或者还可能会有文件夹在里面,所以就需要使用一个简单的递归才能将文件夹删除成功,包括文件夹中的子级文件/夹.!!! 其实很简单,就一 ...

  2. 【maven】 maven的setting.xml文件的详解

    1       Maven的安装 安装Maven之前要确保已经安装好了jdk,并且配置好了环境变量JAVA_HOME.具体安装步骤如下: 从apache网上下载maven项目的压缩包.下载地址为:ht ...

  3. Tomcat不输入项目名进入自己项目(根目录指向自己的项目)

    <Host name="localhost" appBase="webapps" unpackWARs="true" autoDepl ...

  4. EntityFramework Code First 手写代码实现生成数据库

    第一步:写实体类 第二步:写一个实体操作类,此类必须继承Dbcontext,此处的属性,将会在初始化时(第一次作,增,删,改的时候),生成相应的表. 第三步:运行程序,会自动建表 注意: 若实体类发生 ...

  5. Django学习笔记之一

    一.Windows下安装 Django 1.下载安装包解压后放到本地目录如C:\Django-1.7.2 官网地址:https://www.djangoproject.com/download/ 2. ...

  6. 线段树(多维+双成段更新) UVA 11992 Fast Matrix Operations

    题目传送门 题意:训练指南P207 分析:因为矩阵不超过20行,所以可以建20条线段的线段树,支持两个区间更新以及区间查询. #include <bits/stdc++.h> using ...

  7. SQL Prompt激活

    SQL脚本越写越多,总是觉得编写效率太过于低下,这和打字速度无关.在我个人编写SQL脚本时,至少会把SQL的格式排列成易于阅读的,因为其他人会阅读到你的SQL,无论是在程序中或是脚本文件中,良好的排版 ...

  8. 【Cocos2d-x游戏开发】解决Cocos2d-x中文乱码的三种方法

    众所周知,Cocos2d-x是一款不错的开源引擎,但是在Cocos2d-x中直接使用中文是无法正确显示的.比如下面的情况: 解决这个问题常用的有三种方法:1.通过转换为UTF-8编码来显示.2.使用i ...

  9. ccc 多点触控

    研究了一天,多点触控的点无法保存,只能模拟多点触控了 cc.Class({ extends: cc.Component, properties: { wheelStick:{ default:null ...

  10. (转)hadoop 集群间数据迁移

    hadoop集群之间有时候需要将数据进行迁移,如将一些保存的过期文档放置在一个小集群中进行保存. 使用的是社区提供的功能,distcp.用法非常简单: hadoop distcp hdfs://nn1 ...