Ultra-QuickSort
Time Limit: 7000MS   Memory Limit: 65536K
Total Submissions: 42627   Accepted: 15507

Description

In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence 
9 1 0 5 4 ,
Ultra-QuickSort produces the output 
0 1 4 5 9 .
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.

Input

The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.

Output

For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.

Sample Input

5
9
1
0
5
4
3
1
2
3
0

Sample Output

6
0

Source

这道题就是通过求逆序数的和,来求出序列所有的交换次数。用冒泡排序直接会TLE(相当于暴力了),

这道题有3种解法,树状数组、线段树、归并排序(O(N*lgN))

其中归并排序的写法应该是最简单的,树状数组、线段树要用到离散化,博客后续还会跟上

归并写法,其实归并写法,自己并不是很熟练,推介大牛博客

http://blog.163.com/zhaohai_1988/blog/static/20951008520127321239701/

大牛代码真心漂亮!!中间核心,就是学大牛写的

 #include <cstdio>
#include <iostream>
#include <cstring>
#define LL long long              //LL 代替 long long 的写法 中间数据会超出  int
using namespace std; const int max_size = ; int arry[max_size], tmp_arry[max_size]; LL Merge(int *arr, LL beg, LL mid, LL end, int *tmp_arr)
{
memcpy(tmp_arr+beg, arr+beg, sizeof(int)*(end-beg+));
LL i = beg;
LL j = mid + ;
LL k = beg;
LL inversion = ;
while(i <= mid && j <= end)
{
if(tmp_arr[i] <= tmp_arr[j]) ///如果合并逆序数的时候,前边小于等于后边,就不用记录逆序数的值
{
arr[k++] = tmp_arr[i++];
}else{
arr[k++] = tmp_arr[j++]; ///如果不是,则要记录逆序数的值
inversion += (mid - i + );///简单画下就能看出
}
} while(i <= mid) ///把没有并入arr数组的数并入 {
arr[k++] = tmp_arr[i++];
}
while(j <= end)
{
arr[k++] = tmp_arr[j++];
}
return inversion;
} LL MergeInversion(int *arr, LL beg, LL end, int *tmp_arr)
{
LL inversions = ;
if(beg < end)
{
LL mid = (beg + end) >> ;
inversions += MergeInversion(arr, beg, mid, tmp_arr); ///分成两段分别进行记录,递归的进行下去,找逆序数和
inversions += MergeInversion(arr, mid+, end, tmp_arr);
inversions += Merge(arr, beg, mid, end, tmp_arr);
}
return inversions;
} int main()
{
LL n; while(cin >> n)
{
if(n == )
break;
for(int i = ; i < n; ++i)
scanf("%d", &arry[i]);
memcpy(tmp_arry, arry, sizeof(int)*n);
cout << MergeInversion(arry, , n-, tmp_arry) << endl;
}
return ;
}

NUC_TeamTEST_C && POJ2299(只有归并)的更多相关文章

  1. POJ2299 Ultra-QuickSort (JAVA)

    思路是分治,和归并排序一模一样,只是在归并的过程中,顺便统计后半部分序列比前半部分序列小的有多少个 但一直WA,最后是结果数量比较大,会超过int,用long就ac了..做题真坎坷 贴AC代码 imp ...

  2. PAT 1035. 插入与归并(25)

    根据维基百科的定义: 插入排序是迭代算法,逐一获得输入数据,逐步产生有序的输出序列.每步迭代中,算法从输入序列中取出一元素,将之插入有序序列中正确的位置.如此迭代直到全部元素有序. 归并排序进行如下迭 ...

  3. POJ2104 K-th Number(归并树)

    平方分割一直TLE,最后用归并树处理过了,使用STL会比较慢. #include<cstdio> #include<iostream> #include<cstdlib& ...

  4. 归并求逆序数(逆序对数) && 线段树求逆序数

    Brainman Time Limit: 1000 MS Memory Limit: 30000 KB 64-bit integer IO format: %I64d , %I64u   Java c ...

  5. 3种归并操作js代码

    /**良哥的*/ function merge(a, b) { var aLen = a.length, bLen = b.length, maxLen = Math.max(aLen, bLen), ...

  6. AC日记——石子归并 codevs 1048

    1048 石子归并  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Description 有n堆石子排成一列,每堆石子 ...

  7. 51nod 1021 石子归并(dp)

    51nod 1021 石子归并 题解:从i到j合并的最小值:dp[i][j] = min(dp[i][j], dp[i][k] + dp[k+1][j] + sum[j] - sum[i-1]); 最 ...

  8. NOIP 2013 提高组 day1 T2 火柴排队 归并 逆序对

    描述 涵涵有两盒火柴,每盒装有 n 根火柴,每根火柴都有一个高度.现在将每盒中的火柴各自排成一列,同一列火柴的高度互不相同,两列火柴之间的距离定义为:∑i=1n(ai−bi)2∑i=1n(ai−bi) ...

  9. 51nod1022 石子归并 V2

    证明w满足四边形不等式,这里w是m的附属量,形如m[i,j]=opt{m[i,k]+m[k,j]+w[i,j]},此时大多要先证明w满足条件才能进一步证明m满足条件证明m满足四边形不等式证明s[i,j ...

随机推荐

  1. 在RedHat.Enterprise.Linux_v6.3系统中安装Oracle_11gR2教程

    在RedHat.Enterprise.Linux_v6.3系统中安装Oracle_11gR2教程 本教程提供PDF格式下载: 在RedHat.Enterprise.Linux_v6.3系统中安装Ora ...

  2. 【JAVA IO流之字符流】

    一.概述. java对数据的操作是通过流的方式.java用于操作流的对象都在IO包中.流按照操作数据不同分为两种,字节流和字符流.流按照流向分为输入流,输出流. 输入输出的“入”和“出”是相当于内存来 ...

  3. hdu 1754:I Hate It(线段树,入门题,RMQ问题)

    I Hate It Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  4. MySQL5.6 on Windows 安装失败: String was not recognized as a valid DateTime

    在Win7,32位上安装MySQL5.6.21时出现日期/时间格式错误, 如下图所示: 错误描述为: String was not recognized as a valid DateTime. 下面 ...

  5. maven错误解决一:Failed to execute goal org.apache.maven.plugins:maven-compiler-plugin:2.5.1:compile (default-compile)

    解决方法是将 jre的目录在 window->Preferences 里修改java installed里的jre目录改为jdk目录即可. 原因是在jre目录下不存在tools.jar.

  6. 修改Apache配置文件开启gzip压缩传输

    转自:http://down.chinaz.com/server/201202/1645_1.htm 最近无事研究一些Web的优化,用工具page speed检测网站时发现还没有开启gzip压缩,于是 ...

  7. ubuntu中jdk已经安装,但是eclipse启动报错

    问题描述 在ubuntu中,jdk已经正常安装,java_home变量已经配置,但是启动eclipse的时候还是弹出以下错误信息: A Java RunTime Environment (JRE) o ...

  8. POJ 1830 高斯消元

    开关问题   Description 有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为 ...

  9. ios 音乐播放

    #import "ViewController.h" #import <AVFoundation/AVFoundation.h> @interface ViewCont ...

  10. 【SSH】 之 Struts2

    (一)Struts2是什么? Struts2是一个基于MVC设计模式的Web应用框架,它本质上相当于一个servlet,在MVC设计模式中,Struts2作为控制器(Controller)来建立模型与 ...