非常好的线段树题。。。。此题必定会火。。。。。

Mex

Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 955    Accepted Submission(s): 320

Problem Description
Mex is a function on a set of integers, which is universally used for impartial game theorem. For a non-negative integer set S, mex(S) is defined as the least non-negative integer which is not appeared in S. Now our problem is about mex function on a sequence.

Consider a sequence of non-negative integers {ai}, we define mex(L,R) as the least non-negative integer which is not appeared in the continuous subsequence from aL to aR, inclusive. Now we want to calculate the sum of mex(L,R) for all 1 <= L <= R <= n.

 

Input
The input contains at most 20 test cases.
For each test case, the first line contains one integer n, denoting the length of sequence.
The next line contains n non-integers separated by space, denoting the sequence.
(1 <= n <= 200000, 0 <= ai <= 10^9)
The input ends with n = 0.
 

Output
For each test case, output one line containing a integer denoting the answer.
 

Sample Input
3
0 1 3
5
1 0 2 0 10
 

Sample Output
5
24
Hint

For the first test case:mex(1,1)=1, mex(1,2)=2, mex(1,3)=2, mex(2,2)=0, mex(2,3)=0,mex(3,3)=0. 1 + 2 + 2 + 0 +0 +0 = 5.

 

Source
 

Recommend
liuyiding
 

#include <iostream>
#include <cstdio>
#include <cstring>
#include <map>

#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1

using namespace std;

const int maxn=200005;

typedef long long int LL;

int a[maxn],mex[maxn],next[maxn],mx[maxn<<2],sig[maxn<<2],cnt;
LL sum[maxn<<2];
bool vis[maxn];

void pushUP(int rt)
{
    mx[rt]=max(mx[rt<<1],mx[rt<<1|1]);
    sum[rt]=sum[rt<<1]+sum[rt<<1|1];
}

void pushDOWN(int rt,int len)
{
    if(~sig[rt])
    {
        sig[rt<<1]=sig[rt<<1|1]=sig[rt];
        mx[rt<<1]=mx[rt<<1|1]=sig[rt];
        sum[rt<<1]=sig[rt]*(len-len>>1);
        sum[rt<<1|1]=sig[rt]*(len>>1);
        sig[rt]=-1;
    }
}

void build(int l,int r,int rt)
{
    if(l==r)
    {
        mx[rt]=mex[cnt];
        sum[rt]=mex[cnt++];
        return ;
    }
    int m=(r+l)>>1;
    build(lson);
    build(rson);
    pushUP(rt);
}

LL query(int L,int R,int l,int r,int rt)
{
    if(L<=l&&r<=R)
    {
        return sum[rt];
    }
    pushDOWN(rt,r-l+1);
    int m=(l+r)>>1;
    LL ret=0;
    if(L<=m) ret+=query(L,R,lson);
    if(R>m) ret+=query(L,R,rson);
    return ret;
}

int getID(int L,int R,int v,int l,int r,int rt)
{
    if(l==r)
        return l;
    pushDOWN(rt,r-l+1);
    int m=(r+l)>>1;
    if(L<=m&&mx[rt<<1]>v) return getID(L,R,v,lson);
    else if(R>m&&mx[rt<<1|1]>v) return getID(L,R,v,rson);
    return R+1;
}

void update(int L,int R,int c,int l,int r,int rt)
{
    if(L<=l&&r<=R)
    {
        sig[rt]=c;
        mx[rt]=c;
        sum[rt]=c*(r-l+1);
        return ;
    }
    pushDOWN(rt,r-l+1);
    int m=(r+l)>>1;
    if(L<=m) update(L,R,c,lson);
    if(R>m) update(L,R,c,rson);
    pushUP(rt);
}

int main()
{
    int n;
    while(scanf("%d",&n)!=EOF&&n)
    {
        for(int i=1;i<=n;i++)
            scanf("%d",a+i);
        memset(vis,false,sizeof(vis));
        mex[1]=0;
        if(a[1]<n) vis[a[1]]=true;
        while(vis[mex[1]]) mex[1]++;
        for(int i=2;i<=n;i++)
        {
            if(a<n) vis[a]=true;
            mex=mex[i-1];
            while(vis[mex]) mex++;
        }
        map<int,int> mII;
        for(int i=n;i>=1;i--)
        {
            if(mII.find(a)==mII.end()) next=n+1;
            else next=mII[a];
            mII[a]=i;
        }
        cnt=1;LL ans=0;
        memset(mx,0,sizeof(mx));
        memset(sum,0,sizeof(sum));
        memset(sig,-1,sizeof(sig));
        build(1,n,1);
        for(int i=1;i<=n;i++)
        {
            ans+=query(i,n,1,n,1);
            int st=getID(i+1,next-1,a,1,n,1);
            int ed=next-1;
            if(st<=ed) update(st,ed,a,1,n,1);
        }
        printf("%I64d\n",ans);
    }
    return 0;
}

* This source code was highlighted by YcdoiT. ( style: Codeblocks )

HDOJ 4747 Mex的更多相关文章

  1. HDU 4747 Mex 递推/线段树

    题目链接: acm.hdu.edu.cn/showproblem.php?pid=4747 Mex Time Limit: 15000/5000 MS (Java/Others)Memory Limi ...

  2. 【HDU 4747 Mex】线段数

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4747 题意:有一组序列a[i](1<=i<=N), 让你求所有的mex(l,r), mex ...

  3. [HDU 4747] Mex (线段树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4747 这道题是我去年刚入校队的时候参加网赛的题目. 一年过去了,我依然还是不会做.. 这是我难题计划的 ...

  4. HDU 4747 Mex(线段树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4747 题意:给出一个数列A.计算所有的mex(i,j)之和.1<=i<=j<=n. ...

  5. hdu 4747 Mex (2013 ACM/ICPC Asia Regional Hangzhou Online)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4747 思路: 比赛打得太菜了,不想写....线段树莽一下 实现代码: #include<iost ...

  6. hdu 4747 mex 线段树+思维

    http://acm.hdu.edu.cn/showproblem.php?pid=4747 题意: 我们定义mex(l,r)表示一个序列a[l]....a[r]中没有出现过得最小的非负整数, 然后我 ...

  7. hdu 4747 Mex

    http://acm.hdu.edu.cn/showproblem.php?pid=4747 设我们输入的数组为 a[],我们需要从 1 到 n 遍历, 假设遍历到 i 时, 遍历的过程中用b[j]表 ...

  8. HDU 4747 Mex (2013杭州网络赛1010题,线段树)

    Mex Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Submis ...

  9. hdu 4747 Mex( 线段树? 不,区间处理就行(dp?))

    Mex Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Submis ...

随机推荐

  1. [U3D 画起重机,绑脚本和控制它运动的基本操作]

    之前在学习Unity3D,不知为何网上的教学资源真是少啊...我某段时间还卡在不知如何让物体绑个脚本自动运动.. 之所以要学习U3D是因为导师让我做的IOS项目里有个需要模拟起重机,从而控制真实起重机 ...

  2. HDU 1394 Minimum Inversion Number(最小逆序数/暴力 线段树 树状数组 归并排序)

    题目链接: 传送门 Minimum Inversion Number Time Limit: 1000MS     Memory Limit: 32768 K Description The inve ...

  3. Mac下同时安装多个版本的JDK

    JDK8 GA之后,小伙伴们喜大普奔,纷纷跃跃欲试,想体验一下Java8的Lambda等新特性,可是目前Java企业级应用的主打版本还是JDK6, JDK7.因此,我需要在我的电脑上同时有JDK8,J ...

  4. Linux命令:简单函数调用

    脚本编程之函数: function: 功能       结构化编程,不能独立运行,需要调用时执行,可以被多次调用 1.定义一个函数:function FUNCNAME {  command} FUNC ...

  5. HDU1024Max Sum Plus Plus(M段最大和)

    题意:求一个数组中 M 段的 最大和 没看明白怎么搞得 抽空来看,写的不赖 #include <iostream> #include <cstring> #include &l ...

  6. 前端必备:FastStoneCapture 和 Licecap

    前端必备:FastStoneCapture 和 Licecap FastStoneCapture这个软件非常小,只有2M多,并且其功能很强大,包括截图,录制视频,量尺,取色等等,对于前端工程师绝对是必 ...

  7. JavaWeb---总结(九)通过Servlet生成验证码图片

    一.BufferedImage类介绍 生成验证码图片主要用到了一个BufferedImage类,如下: 创建一个DrawImage Servlet,用来生成验证码图片  1 package gacl. ...

  8. java编程思想-java集合总结-基本概念

    1.java 容器类类库的用途是"保存对象",并将其划分为两个不同的概念: 1)Collection.一个独立元素的序列,这些元素都服从一条或多条规则.List 必须按照插入的顺序 ...

  9. 获取jsp页面的宽和高

    var winWidth; var winHeight; function getResult() { if(window.innerWidth) { winWidth=window.innerWid ...

  10. python学习笔记-(六)深copy&浅copy

    在python中,对象赋值实际上是对象的引用.当创建一个对象,然后把它赋给另一个变量的时候,python并没有拷贝这个对象,而只是拷贝了这个对象的引用. 1. 赋值 赋值其实只是传递对象引用,引用对象 ...