关联分析是一种在大规模数据集中寻找有趣关系的任务,这些关系有两种形式:频繁项集关联规则。频繁项集是经常出现在一起的物品的集合,关联规则暗示两种物品之间可能存在的很强的关系。

如何寻找数据集中的频繁或关联关系呢?主要是通过支持度和可信度。

一个项集的支持度被定义为数据集中包含该项集的记录所占的比例。

可信度是针对关联规则来定义的,比如规则A->B的可信度为:支持度{A,B} / 支持度{A}

支持度和可信度是用来量化关联分析是否成功的方法。

Apriori原理:

要计算某个项集在数据集的支持度,需要大量的计算。一个有N个数据的集合共有2N-1种项集的组合,即N=100的数据集可能有2100-1中项集的组合,对于普通的计算机而言,需要很长的时间才能完成运算。

为了降低所需的计算时间,通常采用采用Apriori原理,来减少可能感兴趣的项集。

Apriori在拉丁语中指“来自以前”, Apriori原理:如果某个项集是频繁的,那么它的所有子集也是频繁的;如果一个项集是非频繁集,那么它的所有超集也是非频繁的。

比如,一旦计算出{2,3}的支持度,知道它是非频繁的项集,则可推出{1,2,3},{0,2,3}等包含{2,3}的项集也是非频繁的,就不需要再进行计算支持度了。

使用该原理就可以避免项集数据的指数增长,从而在合理的时间内计算出频繁项集。

使用Apriori算法来发现频繁集

def loadDataSet():
return [[1, 3, 4], [2, 3, 5], [1, 2, 3, 5], [2, 5]] def createC1(dataSet):
C1 = []
for transaction in dataSet:
for item in transaction:
if not [item] in C1:
C1.append([item]) C1.sort()
return map(frozenset, C1)#use frozen set so we
#can use it as a key in a dict def scanD(D, Ck, minSupport):
ssCnt = {}
for tid in D:
for can in Ck:
if can.issubset(tid):
if not ssCnt.has_key(can): ssCnt[can]=1
else: ssCnt[can] += 1
numItems = float(len(D))
retList = []
supportData = {}
for key in ssCnt:
support = ssCnt[key]/numItems
if support >= minSupport:
retList.insert(0,key)
supportData[key] = support
return retList, supportData def aprioriGen(Lk, k): #creates Ck
retList = []
lenLk = len(Lk)
for i in range(lenLk):
for j in range(i+1, lenLk):
L1 = list(Lk[i])[:k-2]; L2 = list(Lk[j])[:k-2]
L1.sort(); L2.sort()
if L1==L2: #if first k-2 elements are equal
retList.append(Lk[i] | Lk[j]) #set union
return retList def apriori(dataSet, minSupport = 0.5):
C1 = createC1(dataSet)
D = map(set, dataSet)
L1, supportData = scanD(D, C1, minSupport)
L = [L1]
k = 2
while (len(L[k-2]) > 0):
Ck = aprioriGen(L[k-2], k)
Lk, supK = scanD(D, Ck, minSupport)#scan DB to get Lk
supportData.update(supK)
L.append(Lk)
k += 1
return L, supportData

关联分析---Apriori的更多相关文章

  1. 关联分析Apriori算法和FP-growth算法初探

    1. 关联分析是什么? Apriori和FP-growth算法是一种关联算法,属于无监督算法的一种,它们可以自动从数据中挖掘出潜在的关联关系.例如经典的啤酒与尿布的故事.下面我们用一个例子来切入本文对 ...

  2. 数据挖掘-关联分析 Apriori算法和FP-growth 算法

    •1.关联分析概念 关联分析是从大量数据中发现项集之间有趣的关联和相关联系. ​ •定义:1.事务:每一条交易称为一个事务,如上图包含5个事务.2.项:交易的每一个物品称为一个项,例如豆奶,啤酒等. ...

  3. 关联分析(Apriori算法)

    两个概念: 频繁项集:常出现的物品集合 关联分析:找到诸如:尿布-->啤酒的关联,反过来则是另一条 两个控制参数: 项集的支持度(support):一个项集出现的次数在所有样本中出现的比例 可信 ...

  4. Apriori 关联分析算法原理分析与代码实现

    前言 想必大家都听过数据挖掘领域那个经典的故事 - "啤酒与尿布" 的故事. 那么,具体是怎么从海量销售信息中挖掘出啤酒和尿布之间的关系呢? 这就是关联分析所要完成的任务了. 本文 ...

  5. 机器学习实战 - 读书笔记(11) - 使用Apriori算法进行关联分析

    前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第11章 - 使用Apriori算法进行关联分析. 基本概念 关联分析(associat ...

  6. 使用Apriori算法和FP-growth算法进行关联分析

    系列文章:<机器学习实战>学习笔记 最近看了<机器学习实战>中的第11章(使用Apriori算法进行关联分析)和第12章(使用FP-growth算法来高效发现频繁项集).正如章 ...

  7. Apriori关联分析算法概述

    概念 关联分析:从大规模数据集中寻找物品间的隐含关系.物品间关系又分为两种:频繁项集或关联规则,频繁项集是经常出现一块的物品集合:关联规则则暗示物品间存在很强的联系 关联评判标准:支持度和可信度.支持 ...

  8. 【机器学习实战】第11章 使用 Apriori 算法进行关联分析

    第 11 章 使用 Apriori 算法进行关联分析 关联分析 关联分析是一种在大规模数据集中寻找有趣关系的任务. 这些关系可以有两种形式: 频繁项集(frequent item sets): 经常出 ...

  9. 无监督学习算法-Apriori进行关联分析

    关联分析 是无监督讯息算法中的一种,Apriori主要用来做_关联分析_,_关联分析_可以有两种形式:频繁项集或者关联规则.举个例子:交易订单 序号 商品名称 1 书籍,电脑 2 杯子,手机,手机壳, ...

随机推荐

  1. uva 11636

    #include <cstdio> #include <cstring> #include <iostream> using namespace std; int ...

  2. soapui中文操作手册(二)----通过您的WSDL请求创建一个测试

      1.通过您的WSDL请求创建一个测试 点击加号旁边的导航拓展项目树的Web服务,并选择请求: 在SoapUI Pro中,所述请求编辑出现在右边.SoapUI Pro有一个编辑器,它简化了XML的层 ...

  3. 使用for( var each in record){} 去寻找object里面的内容;

    for(var each in object){ alert(each); }

  4. MongoDB 用户配置

    ====[安装]====DOS下切换到文件所在盘符 例如 D:\MongoDB\bin设置数据库保存位置 mongod.exe --dbpath D:\MongoDB\Data [--auth]//用 ...

  5. JavaScript_JS判断客户端是否是iOS或者Android

    通过判断浏览器的userAgent,用正则来判断是否是ios和Android客户端.代码如下: <script type="text/javascript"> var ...

  6. CentOS转的服务器磁盘规划

    我的服务器是500G.最重要的是/var分区一定要大(不论postfix邮件,还是LAMP的WEB 服务器等).最好是400G以上.具体的/boot 只要100M就足够了.下面是我的分区方案:硬盘50 ...

  7. 在配置IIS负载均衡时,引起的一系列问题

    问题一: IIS中要上传文件的路径是另一台服务器的地址(如:本机IP是192.168.0.100,文件保存的路径在://192.168.0.101/images/folder),在上传时抛出异常: A ...

  8. javascript 时间操作

    javascript时间函数 javascript提供了Date对象来进行时间和日期的计算.Date对象有多种构造函数: 1.dateObj=new Date() //当前时间 2.dateObj=n ...

  9. (转)KeyDown、KeyUp、KeyPress区别

    Windows窗体通过引发键盘事件来处理键盘输入以响应Windows消息,大多数Windows窗体应用程序都通过处理键盘事件来以独占方式处理键盘输入. 1.按键的类型 Windows窗体将键盘输入标 ...

  10. 索引器、哈希表Hashtabl、字典Dictionary(转)

    一.索引器 索引器类似于属性,不同之处在于它们的get访问器采用参数.要声明类或结构上的索引器,使用this关键字. 示例:   索引器示例代码 /// <summary> /// 存储星 ...