题目链接: 传送门

Domino Effect

time limit per test:1 second     memory limit per test:256 megabytes

Description

Little Chris is a huge fan of linear algebra. This time he has been given a homework about the unusual square of a square matrix.
The dot product of two integer number vectors x and y of size n is the sum of the products of the corresponding components of the vectors. The unusual square of an n × n square matrix A is defined as the sum of n dot products. The i-th of them is the dot product of the i-th row vector and the i-th column vector in the matrix A.
Fortunately for Chris, he has to work only in GF(2)! This means that all operations (addition, multiplication) are calculated modulo 2. In fact, the matrix A is binary: each element of A is either 0 or 1. For example, consider the following matrix A:

The unusual square of A is equal to (1·1 + 1·0 + 1·1) + (0·1 + 1·1 + 1·0) + (1·1 + 0·1 + 0·0) = 0 + 1 + 1 = 0.
However, there is much more to the homework. Chris has to process q queries; each query can be one of the following:

  • 1、given a row index i, flip all the values in the i-th row in A;
  • 2、given a column index i, flip all the values in the i-th column in A;
  • 3、find the unusual square of A.
    To flip a bit value w means to change it to 1 - w, i.e., 1 changes to 0 and 0 changes to 1.
    Given the initial matrix A, output the answers for each query of the third type! Can you solve Chris's homework?

Input

The first line of input contains an integer n (1 ≤ n ≤ 1000), the number of rows and the number of columns in the matrix A. The next n lines describe the matrix: the i-th line contains n space-separated bits and describes the i-th row of A. The j-th number of the i-th line aij (0 ≤ aij ≤ 1) is the element on the intersection of the i-th row and the j-th column of A.
The next line of input contains an integer q (1 ≤ q ≤ 106), the number of queries. Each of the next q lines describes a single query, which can be one of the following:

  • 1 i — flip the values of the i-th row;
  • 2 i — flip the values of the i-th column;
  • 3 — output the unusual square of A.
    Note: since the size of the input and output could be very large, don't use slow output techniques in your language. For example, do not use input and output streams (cin, cout) in C++.

Output

Let the number of the 3rd type queries in the input be m. Output a single string s of length m, where the i-th symbol of s is the value of the unusual square of A for the i-th query of the 3rd type as it appears in the input.

Sample Input

3
1 1 1
0 1 1
1 0 0
12
3
2 3
3
2 2
2 2
1 3
3
3
1 2
2 1
1 1
3

Sample Output

01001

解题思路:

题目定义了矩阵的特殊乘法,
尝试分析一下3*3的矩阵:

A11  A12  A13              A11*A11+A12*A21+A13*A31
A21  A22  A23    =     +   A12*A21+A22*A22+A32*A23          =     A11*A11+A22*A22+A33*A33+0
A31  A32  A33          +   A13*A31+A23*A32+A33*A33

所以对于每次操作只要对对角线元素操作就好了。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef __int64 LL;
const int MAX = 1005;
int ans[MAX][MAX];

int main()
{
    int N,q,sum = 0;
    memset(ans,0,sizeof(ans));
    scanf("%d",&N);
    for (int i = 1;i <= N;i++)
    {
        for (int j = 1;j <= N;j++)
        {
            scanf("%d",&ans[i][j]);
        }
    }
    for (int i = 1;i <= N;i++)
    {
        for (int j = 1;j <= N;j++)
        {
            sum += ans[i][j]*ans[j][i];
        }
    }
    sum %= 2;
    scanf("%d",&q);
    while (q--)
    {
        int opt,tmp;
        scanf("%d",&opt);
        if (opt != 3)
        {
            scanf("%d",&tmp);
            if (sum == 0) sum = 1;
            else if (sum == 1) sum = 0;
        }
        else
        {
            printf("%d",sum);
        }
    }
    printf("\n");
    return 0;
}

CF 405C Unusual Product(想法题)的更多相关文章

  1. CF 214B Hometask(想法题)

    题目链接: 传送门 Hometask Time Limit: 2 seconds     Memory Limit: 256 megabytes Description Furik loves mat ...

  2. CF 628B New Skateboard --- 水题

    CD 628B 题目大意:给定一个数字(<=3*10^5),判断其能被4整除的连续子串有多少个 解题思路:注意一个整除4的性质: 若bc能被4整除,则a1a2a3a4...anbc也一定能被4整 ...

  3. CF 628A --- Tennis Tournament --- 水题

    CF 628A 题目大意:给定n,b,p,其中n为进行比赛的人数,b为每场进行比赛的每一位运动员需要的水的数量, p为整个赛程提供给每位运动员的毛巾数量, 每次在剩余的n人数中,挑选2^k=m(m & ...

  4. HDU 4972 Bisharp and Charizard 想法题

    Bisharp and Charizard Time Limit: 1 Sec  Memory Limit: 256 MB Description Dragon is watching NBA. He ...

  5. CodeForces 111B - Petya and Divisors 统计..想法题

    找每个数的约数(暴力就够了...1~x^0.5)....看这约数的倍数最后是哪个数...若距离大于了y..统计++...然后将这个约数的最后倍数赋值为当前位置...好叼的想法题.... Program ...

  6. HDU - 5806 NanoApe Loves Sequence Ⅱ 想法题

    http://acm.hdu.edu.cn/showproblem.php?pid=5806 题意:给你一个n元素序列,求第k大的数大于等于m的子序列的个数. 题解:题目要求很奇怪,很多头绪但写不出, ...

  7. CF 701B Cells Not Under Attack(想法题)

    题目链接: 传送门 Cells Not Under Attack time limit per test:2 second     memory limit per test:256 megabyte ...

  8. CF 405B Domino Effect(想法题)

    题目链接: 传送门 Domino Effect time limit per test:1 second     memory limit per test:256 megabytes Descrip ...

  9. C. Unusual Product(cf)

    http://codeforces.com/problemset/problem/405/C 题意: 给出一个n*n的矩阵,有q个操作,输入3时,输出A ,A等于第i行乘以第i列的对应元素的和(mod ...

随机推荐

  1. [OpenCVsharp]利用指针实现高速访问像素RGB值

    先简单介绍下什么是OpenCVsharp,内容取自百度百科 OpenCvSharp是一个OpenCV的.Net wrapper,应用最新的OpenCV库开发,使用习惯比EmguCV更接近原始的Open ...

  2. 系统升级日记(1)- 升级到SQL Server 2012

    最近一段时间在公司忙于将各类系统进行升级,其最主要的目标有两个,一个是将TFS2010升级到TFS2013,另外一个是将SharePoint 2010升级到SharePoint 2013.本记录旨在记 ...

  3. Centos下编译JDK

    因为OpenJDK是开源的,这里使用openJDK进行编译联系 环境要求 Centos6.7 64位 openjdk-7u40-fcs-src-b43-26_aug_2013.zip bootstra ...

  4. 东大OJ-麦森数

    1064: 麦森数 时间限制: 1 Sec  内存限制: 128 MB 提交: 52  解决: 9 [提交][状态][讨论版] 题目描述 形如2P-1的素数称为麦森数,这时P一定也是个素数.但反过来不 ...

  5. Day Seven(Beta)

    站立式会议 站立式会议内容总结 331 今天: 1)阅读html 5+文档 未来走h5路线 2)restful,未来开发接口 3)h5+demo运行 4)get 代码:a||(a=as); 5)js ...

  6. springMvc请求的跳转和传值

    forword跳转页面的三种方式: 1.使用serlvet /** * 使用forward跳转,传递基本类型参数到页面 * 注意: * 1.使用servlet原生API Request作用域 * */ ...

  7. oracle判断字段是否存在语句

    declare v_cnt number; begin select count(*) into v_cnt from dba_tab_columns where table_name='T_IDC_ ...

  8. ASP.NET配置Ueditor编辑器上传图片路径

    1.配置ueditor/editor_config.js文件,将 //图片上传配置区 ,imageUrl:URL+"net/imageUp.ashx" //图片上传提交地址 ,im ...

  9. Linux(Ubuntu)下如何安装JDK

    一.下载 首先,当然是要下载了. 按照需要选择不同的版本.笔者选择的是 jdk-7u45,如图: 二. 解压 将下载下来的 .tar.gz 文件解压. 使用如下命令解压: sudo tar zxvf ...

  10. git介绍

    简介:Git是一个开源的分布式版本控制系统,用于敏捷高效地处理任何或小或大的项目.Git 是 Linus Torvalds 为了帮助管理 Linux 内核开发而开发的一个开放源码的版本控制软件.Git ...