[问题2015S03] 复旦高等代数 II(14级)每周一题(第四教学周)
[问题2015S03] 设 \(g(x)=x^n+a_1x^{n-1}+\cdots+a_{n-1}x+a_n\) 是数域 \(\mathbb{K}\) 上的多项式, \(V\) 是 \(\mathbb{K}\) 上的 \(n\) 维线性空间, \(\varphi\) 是 \(V\) 上的线性变换, \(\alpha_1\neq 0,\alpha_2,\cdots,\alpha_n\) 是 \(V\) 中的向量, 满足 \[\varphi(\alpha_1)=\alpha_2,\,\varphi(\alpha_2)=\alpha_3,\,\cdots,\,\varphi(\alpha_{n-1})=\alpha_n,\,\varphi(\alpha_n)=-a_n\alpha_1-a_{n-1}\alpha_2-\cdots-a_1\alpha_n.\] 证明: 若 \(g(x)\) 在 \(\mathbb{K}\) 上不可约, 则 \(\{\alpha_1,\alpha_2,\cdots,\alpha_n\}\) 是 \(V\) 的一组基. 举例说明: 若 \(g(x)\) 在 \(\mathbb{K}\) 上可约, 则上述结论一般并不成立.
问题解答请在以下网址下载:http://pan.baidu.com/share/home?uk=103502710#category/type=0
[问题2015S03] 复旦高等代数 II(14级)每周一题(第四教学周)的更多相关文章
- [问题2015S01] 复旦高等代数 II(14级)每周一题(第二教学周)
[问题2015S01] 设 \(M_n(\mathbb{R})\) 是 \(n\) 阶实方阵全体构成的实线性空间, \(\varphi\) 是 \(M_n(\mathbb{R})\) 上的线性变换, ...
- [问题2015S08] 复旦高等代数 II(14级)每周一题(第九教学周)
[问题2015S08] 设 \(A\) 为 \(n\) 阶复方阵, 证明: \(A\overline{A}\) 与 \(\overline{A}A\) 相似, 其中 \(\overline{A}\) ...
- [问题2014S01] 复旦高等代数II(13级)每周一题(第一教学周)
问题2014S01 设 \(f(x_1,x_2,\cdots,x_n)\) 是次数等于 2 的 \(n\) 元实系数多项式, \(S\) 是使得 \(f(x_1,x_2,\cdots,x_n)\) ...
- [问题2014S09] 复旦高等代数II(13级)每周一题(第九教学周)
[问题2014S09] 证明: \(n\) 阶方阵 \(A\) 与所有的 \(A^m\,(m\geq 1)\) 都相似的充分必要条件是 \(A\) 的 Jordan 标准型为 \[\mathrm{d ...
- [问题2014A07] 复旦高等代数 I(14级)每周一题(第九教学周)
[问题2014A07] 设 \(A\) 是有理数域 \(\mathbb{Q}\) 上的 4 阶方阵, \(\alpha_1,\alpha_2,\alpha_3,\alpha_4\) 是 \(\mat ...
- [问题2014S02] 复旦高等代数II(13级)每周一题(第二教学周)
问题2014S02 设实系数多项式 \begin{eqnarray*}f(x) &=& a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0, \\ g(x) ...
- [问题2014S12] 复旦高等代数II(13级)每周一题(第十二教学周)
[问题2014S12] 设 \(A,B\) 都是 \(n\) 阶半正定实对称阵, 证明: \(AB\) 的所有特征值都是非负实数. 进一步, 若 \(A,B\) 都是正定实对称阵, 证明: \(AB ...
- 复旦高等代数 II(17级)每周一题
本学期将继续进行高等代数每周一题的活动.计划从第一教学周开始,到第十六教学周为止(根据法定节假日安排,中间个别周会适当地停止),每周的周末将公布1道思考题(共16道),供大家思考和解答.每周一题通过“ ...
- 复旦高等代数II(18级)每周一题
本学期将继续进行高等代数每周一题的活动.计划从第一教学周开始,到第十五教学周结束,每周的周末公布一道思考题(预计15道),供大家思考和解答.每周一题将通过“高等代数官方博客”(以博文的形式)和“高等代 ...
随机推荐
- Mysql忽略文件名的安全编码
author:skatetime:2014/09/28 mysql如何删除以"#sql-"开头的临时表 现象:在重建索引后,发现Mysql服务器的磁盘空间快满了 在用如下命令重建索 ...
- 关于 calloc 函数使用 与fun 函数
s=(float *) calloc (1,sizeof(float)); #include "stdio.h"#include "stdlib.h"void ...
- <script>元素的位置
脚本元素会组织下载网页内容,浏览器可以同时下载多个组件,但一旦遇到一个外部脚本文本后,浏览器会停止进一步下载,知道这个脚本文件下载,解析并执行完毕.这会严重影响网页载入的总时间,特别是在网页在入时会发 ...
- unity assert server 与 cache server
Asset server 其实就是unity提供的版本控制工具,不过我们都转到P4V了,上午尝试了一下,如果小团队使用还是不错的,使用过程大致如下,具体的还是要大伙去官网看喽 服务器安装文件下载: h ...
- mysqli_multi_query($link, $sql_w);
$sql_w = 'INSERT INTO w1 (wint) VALUES (55);'; $sql_w .= 'INSERT INTO w1 (wint) VALUES (505);'; var_ ...
- php安装memcache注意事项
有没有谁遇到过这样的问题:在php.ini里面 extension=php_memcache.dll添加了memcache扩展,在ext目录里也添加了php_memcache.dll文件.但用phpi ...
- 经验分享:Xcode 创建.a和framework静态库【转】
作者:Haley_Wong 最近因为项目中的聊天SDK,需要封装成静态库,所以实践了一下创建静态库的步骤,做下记录. 库介绍 库从本质上来说是一种可执行代码的二进制格式,可以被载入内存中执行.库分静态 ...
- Kafka组件监控
Kafka web console http://blog.csdn.net/hengyunabc/article/details/40431627 KafkaOffsetMonitor http:/ ...
- JavaMail邮件开发
一.只带有纯文本的邮件 代码事例如下: package com.lyh.sendemail; import java.util.Properties; import javax.mail.Messag ...
- 将一个query后面的参数转为数组
function detailUri($params) { $returnParams = array(); if (isset($params)) { $arParams = explode(&qu ...