转自:http://shujuren.org/article/45.html

在数据分析过程中最头疼的应该是如何应付脏数据,脏数据的存在将会对后期的建模、挖掘等工作造成严重的错误,所以必须谨慎的处理那些脏数据。

脏数据的存在形式主要有如下几种情况:

1)缺失值

2)异常值

3)数据的不一致性

下面就跟大家侃侃如何处理这些脏数据。

一、缺失值

缺失值,顾名思义就是一种数据的遗漏,根据CRM中常见的缺失值做一个汇总:

1)会员信息缺失,如身份证号、手机号、性别、年龄等

2)消费数据缺失,如消费次数、消费金额、客单价,卡余等

3)产品信息缺失,如批次、价格、折扣、所属类别等

根据实际的业务需求不同,可以对缺失值采用不同的处理办法,如需要给会员推送短信,而某些会员恰好手机号不存在,可以考虑剔除;如性别不知道,可以使用众数替代;如年龄未知,可以考虑用均值替换。当然还有其他处理缺失值的办法,如多重插补法。下面以一个简单的例子,来说明缺失值的处理。

#模拟一批含缺失值的数据集

set.seed(1234)
Tel <- 13812341000:13812341999
Sex <- sample(c('F','M'), size = 1000, replace = T, prob = c(0.4,0.6))
Age <- round(runif(n = 1000, min = 18, max = 60))
Freq <- round(runif(n = 1000, min = 1, max = 368))
Amount <- rnorm(n = 1000, mean = 134, sd = 10)
ATV <- runif(n = 1000, min = 23, max = 138)
df <- data.table(Tel = Tel, Sex = Sex, Age = Age, Freq = Freq, Amount= Amount, ATV = ATV)

上面的数据框是一个不含有任何缺失值的数据集,现在我想随机产生100个缺失值,具体操作如下:

查看原始数据集的概要

summary(df)

随机参数某行某列的下标

set.seed(1234)

i <- sample(1:6, size = 100, replace = T)

j <- sample(1:1000, size = 100)

将下标组合成矩阵

index <- as.matrix(data.frame(j,i))

将原始数据框转换为矩阵

df <- as.matrix(df)

将随机参数的行列赋值为NA

df[index] <- NA

重新将矩阵转换为数据框

df2 <- as.data.frame(df)

变换变量类型

df2$Age <- as.integer(df2$Age)

df2$Freq <- as.integer(df2$Freq)

df2$Amount <- as.numeric(df2$Amount)

df2$ATV <- as.numeric(df2$ATV)

再一次查看赋予缺失值后的数据框概要

summary(df2)

很明显这里已经随机产生100个缺失值了,下面看看这100个缺失值的分布情况。我们使用VIM包中的aggr()函数绘制缺失值的分布情况:

library(VIM)

aggr(df2, prop = FALSE, numbers = TRUE)

图中显示:Tel变量有21个缺失,Sex变量有28个缺失,Age变量有6个缺失,Freq变量有20个缺失,Amount变量有13个缺失,ATV有12个缺失。

为了演示,下面对Tel变量缺失的观测进行剔除;对Sex变量的缺失值用众数替换;Age变量用平均值替换;Freq变量、Amount变量和ATV变量用多重插补法填充。

剔除Tel变量的缺失观测

df3 <- df2[is.na(df2$Tel)==FALSE,]

分别用众数和均值替换性别和年龄

性别的众数

Sex_mode <- names(which.max(table(df3$Sex)))

年龄的均值

Age_mean <- mean(df3$Age, na.rm = TRUE)

library(tidyr)

df3 <- replace_na(df3,replace = list(Sex = Sex_mode, Age = Age_mean))

summary(df3)

这个时候,Tel变量、Sex变量和Age变量已不存在缺失值,下面对Freq变量、Amount变量和ATV变量使用多重插补法。

可通过mice包实现多重插补法,该包可以对数值型数据和因子型数据进行插补。

对于数值型数据,默认使用随机回归添补法(pmm);对二元因子数据,默认使用Logistic回归添补法(logreg);对多元因子数据,默认使用分类回归添补法(polyreg)。

其他插补法,可通过?mice查看相关文档。

library(mice)

对缺失值部分,进行5次的多重插补,这里默认使用随机回归添补法(pmm)

imp <- mice(data = df3, m = 5)

查看一下插补的结果

imp$imp

计算5重插补值的均值

Freq_imp <- apply(imp$imp$Freq,1,mean)

Amount_imp <- apply(imp$imp$Amount,1,mean)

ATV_imp <- apply(imp$imp$ATV,1,mean)

并用该均值替换原来的缺失值

df3$Freq[is.na(df3$Freq)] <- Freq_imp

df3$Amount[is.na(df3$Amount)] <- Amount_imp

df3$ATV[is.na(df3$ATV)] <- ATV_imp

再次查看填补完缺失值后的数据集和原始数据集概况

summary(df3)

summary(df2)

通过不同的方法将缺失值数据进行处理,从上图可知,通过填补后,数据的概概览情况基本与原始数据相近,说明填补过程中,基本保持了数据的总体特征。

二、异常值

异常值也是非常痛恨的一类脏数据,异常值往往会拉高或拉低数据的整体情况,为克服异常值的影响,我们需要对异常值进行处理。首先,我们需要识别出哪些值是异常值或离群点,其次如何处理这些异常值。下面仍然以案例的形式,给大家讲讲异常值的处理:

1、识别异常值

一般通过绘制盒形图来查看哪些点是离群点,而离群点的判断标准是四分位数与四分位距为基础。

即离群点超过上四分位数的1.5倍四分位距或低于下四分位数的1.5倍四分位距。

例子:

随机产生一组数据

set.seed(1234)

value <- c(rnorm(100, mean = 10, sd = 3), runif(20, min = 0.01, max
= 30), rf(30, df1 = 5, df2 = 20))

绘制箱线图,并用红色的方块标注出异常值

library(ggplot2)

ggplot(data = NULL, mapping = aes(x ='', y = value)) + geom_boxplot(outlier.colour = 'red', outlier.shape = 15, width = 1.2)

图中可知,有一部分数据落在上四分位数的1.5倍四分位距之上,即异常值,下面通过编程,将异常值找出来:

计算下四分位数、上四分位数和四分位距

QL <- quantile(value, probs = 0.25)

QU <- quantile(value, probs = 0.75)

QU_QL <- QU-QL

QL;QU;QU_QL

2、找出异常点

which(value > QU + 1.5*QU_QL)

value[which(value > QU + 1.5*QU_QL)]

结果显示,分别是第104、106、110、114、116、118和120这6个点。下面就要处理这些离群点,一般有两种方法,即剔除或替补。剔除很简单,但有时剔除也会给后面的分析带来错误的结果,接下来就讲讲替补。

用离异常点最近的点替换

test01 <- value

out_imp01 <- max(test01[which(test01 <= QU + 1.5*QU_QL)])

test01[which(test01 > QU + 1.5*QU_QL)] <- out_imp01

用上四分位数的1.5倍四分位距或下四分位数的1.5倍四分位距替换

test02 <- value

out_imp02 <- QU + 1.5*QU_QL

test02[which(test02 > QU + 1.5*QU_QL)] <- out_imp02

对比替换前后的数据概览

summary(value)

summary(test01)

summary(test02)

三、数据的不一致性

数据的不一致性一般是由于不同的数据源导致,如有些数据源的数据单位是斤,而有些数据源的数据单位为公斤;如有些数据源的数据单位是米,而有些数据源的数据单位为厘米;如两个数据源的数据没有同时更新等。对于这种不一致性可以通过数据变换轻松得到一致的数据,只有数据源的数据一致了,才可以进行统计分析或数据挖掘。由于这类问题的处理比较简单,这里就不累述具体的处理办法了。

如何使用R语言解决可恶的脏数据的更多相关文章

  1. 【R笔记】R语言进阶之4:数据整形(reshape)

    R语言进阶之4:数据整形(reshape) 2013-05-31 10:15 xxx 网易博客 字号:T | T 从不同途径得到的数据的组织方式是多种多样的,很多数据都要经过整理才能进行有效的分析,数 ...

  2. 写论文,没数据?R语言抓取网页大数据

    写论文,没数据?R语言抓取网页大数据 纵观国内外,大数据的市场发展迅猛,政府的扶持也达到了空前的力度,甚至将大数据纳入发展战略.如此形势为社会各界提供了很多机遇和挑战,而我们作为卫生(医学)统计领域的 ...

  3. 大数据基础--R语言(刘鹏《大数据》课后习题答案)

    1.R语言是解释性语言还是编译性语言?   解释性语言 2.简述R语言的基本功能.   R语言是一套完整的数据处理.计算和制图软件系统,主要包括以下功能: (1)数据存储和处理功能,丰富的数据读取与存 ...

  4. R语言进阶之4:数据整形(reshape)

    一.通过重新构建数据进行整形 数据整形最直接的思路就把数据全部向量化,然后按要求用向量构建其他类型的数据.这样是不是会产生大量的中间变量.占用大量内存?没错.R语言的任何函数(包括赋值)操作都会有同样 ...

  5. 吴裕雄--天生自然 R语言开发学习:导入数据

    2.3.6 导入 SPSS 数据 IBM SPSS数据集可以通过foreign包中的函数read.spss()导入到R中,也可以使用Hmisc 包中的spss.get()函数.函数spss.get() ...

  6. R语言-来自Prosper的贷款数据探索

    案例分析:Prosper是美国的一家P2P在线借贷平台,网站撮合了一些有闲钱的人和一些急用钱的人.用户若有贷款需求,可在网站上列出期望数额和可承受的最大利率.潜在贷方则为数额和利率展开竞价. 本项目拟 ...

  7. R语言操作mysql上亿数据量(ff包ffbase包和ETLUtils包)

    平时都是几百万的数据量,这段时间公司中了个大标,有上亿的数据量. 现在情况是数据已经在数据库里面了,需要用R分析,但是完全加载不进来内存. 面对现在这种情况,R提供了ff, ffbase , ETLU ...

  8. R语言学习笔记:取数据子集

    上文介绍了,如何生成序列,本文介绍一下如何取出其数据子集 取出元素的逻辑值 > x<-c(0,-3,4,-1,45,90,5) > x>0 [1] FALSE FALSE  T ...

  9. R语言-来自拍拍贷的数据探索

    案例分析:拍拍贷是中国的一家在线借贷平台,网站撮合了一些有闲钱的人和一些急用钱的人.用户若有贷款需求,可在网站上选择借款金额. 本项目拟通过该数据集的探索,结合自己的理解进行分析,最终目的的是初步预测 ...

随机推荐

  1. classmethod一个用处是创建可选类构造器

    Definition and Introduction通常来说, descriptor 是一种绑定着特殊行为属性的对象, 在访问它时行为被descriptor协议定义的方法所重载.这些方法是__get ...

  2. php 执行的目录到新的 directory 目录中

    chdir : 改变目录. dir : 目录类别类. closedir : 关闭目录 handle. opendir : 打开目录 handle. readdir : 读取目录 handle. rew ...

  3. IOS网络第一天 - 02SDWebImage

    **************SDWebImage加载图片 #import "HMAppsViewController.h" #import "HMApp.h" ...

  4. js中的text(),html() ,val()的区别

    js中的text(),html() ,val()的区别 text(),html() ,val()三个方法用于html元素的存值和取值,但是他们各有特点,text()用于html元素文本内容的存取,ht ...

  5. PHP的排序函数的总结

    Sort     破坏索引 升序    值排序 Rsort    破坏索引 降序    值排序 Asort    保持索引 升序     值排序 Arsort   保持索引 降序     值排序 Ks ...

  6. A trip through the Graphics Pipeline 2011_07_Z/Stencil processing, 3 different ways

    In this installment, I’ll be talking about the (early) Z pipeline and how it interacts with rasteriz ...

  7. Android SDK路径不能含有空格

    错误, android sdk location shoud not contain whitespace,as this can cause problems with thte ndk tools

  8. NEC学习 ---- 布局 -三列,左侧自适应

    效果图: html代码: <div id="demo4"> <div class="g-bd4 f-cb"> <div class ...

  9. Java 学习第一步-JDK安装和Java环境变量配置

    Java学习第一步——JDK安装及Java环境变量配置 [原文]  2014-05-30 9:09  Java SE  阿超  9046 views Java作为当下很主流的编程语言,学习Java的朋 ...

  10. css3渐变之linear-gradient与-webkit-linear-gradient写法异同

    语法background: linear-gradient(direction, color-stop1, color-stop2, ...); 通常只需要linear-gradient,兼容性较好. ...