题目

吉老师的题做不动啊

首先\([l_1,r_1],[l_2,r_2]\)并不是非常好做,我们考虑将其拆成前缀信息

设\(solve(n,m)=\sum_{i=0}^n\sum_{j=0}^m[m|(i\bigoplus j)]\)

于是我们的答案就变成了\(solve(r_1,r_2)-solve(l_1-1,r_2)-solve(r_1,l_2-1)+solve(l_1-1,l_2-1)\)

考虑\(solve(r_1,r_2)\)怎么求

一个非常特殊的情况是\(r_1=2^n-1,r_2=2^m-1\),不妨假设\(n<m\),则\([0,2^n)\)和\([0,2^m)\)各选择一个数异或起来,能取遍\([0,2^m)\),且每一个数出现的次数都是\(2^n\)

正确性显然

考虑推广到更一般的情况,我们把\([0,r_1)\)拆分一下,拆分成\(\log\)段\([v,v+2^k)\)的区间,比如说对于\(101010\),可以拆成\([0,2^5),[2^5,2^5+2^3),[2^5+2^3,2^5+2^3+2^1)\)

这样的拆分有一个特点,如果有\(v\neq 0\),那么一定会存在\(v>2^k\),这个性质接下来非常重要

将\([0,r_1),[0,r_2)\)各拆成\(\log\)段区间后,我们暴力从两边各选一段区间出来,假设为\([x,x+2^a)\)和\([y,y+2^b)\),还是不妨假设\(a<b\)

于是在忽略\(x,y\)的情况下两个区间变成了\([0,2^a),[0,2^b)\),于是各选一个异或起来能取遍\([0,2^b)\)且每个值能被异或出来\(2^a\)次

现在考虑把\(x,y\)引入,不难发现因为\(x>2^a\),所以从\([0,2^a)\)拿出一个数,加上\(x\)和异或\(x\)是等价的;\(y\)那边同理

于是\([0,2^b)\)中的每一个数拿出来和\(x\bigoplus y\)异或一下,就是真实的从\([x,x+2^a)\)和\([y,y+2^b)\)各拿一个数出来异或的结果。

所以现在只需要求出\([0,2^b)\)内有多少个满足异或\(x\bigoplus y\)后\(\rm mod\ m=0\),这样的数的个数乘上\(2^a\)就是答案了

做到这里就不会了,接下来都是祖特教我的。

我们不难发现\(x\bigoplus y\)如果不是\(0\),则必然大于\(2^b\),于是\(x\bigoplus y\)和\([0,2^b)\)内的数异或,必然不会改变必\(2^b\)更高的二进制位。

所以想要使得异或出来的数是\(m\)的倍数,只需要让\(x\bigoplus y\)小于\(2^b\)的位数从全\(0\)取到全\(1\),从中选出\(m\)的倍数即可。

代码

#include<bits/stdc++.h>
#define re register
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
const int mod=998244353;
inline int dqm(int x) {return x<0?x+mod:x;}
inline int qm(int x) {return x>=mod?x-mod:x;}
LL l1,l2,r1,r2;int m,top[2];
struct Seg{LL v,k;}a[2][65];
inline LL getid(LL a,LL b) {return a%b==0?a/b:a/b+1;}
inline LL solve(LL n,LL k)
{
LL t=0,tot=0;
for(re LL i=63;i>=0;i--)
{
t|=(1ll<<i);
if(!(n&(1LL<<i))) continue;
LL l=k&t,r=l+(1ll<<i)-1;
LL L=getid(l,m),R=r/m;
tot=qm(tot+(R-L+1)%mod);
}
return tot;
}
inline int calc(LL n,LL m) {
++n,++m;int ans=0;
top[0]=top[1]=0;
LL now=0;
for(re LL i=63;i>=0;--i)
if(n>>i&1ll) {
a[0][++top[0]].v=now,a[0][top[0]].k=i;
now|=(1ll<<i);
}
now=0;
for(re LL i=63;i>=0;--i)
if(m>>i&1ll) {
a[1][++top[1]].v=now,a[1][top[1]].k=i;
now|=(1ll<<i);
}
for(re int i=1;i<=top[0];++i)
for(re int j=1;j<=top[1];++j) {
now=a[0][i].v^a[1][j].v;
LL mx=max(a[0][i].k,a[1][j].k),mn=min(a[0][i].k,a[1][j].k);
mn=(1ll<<mn);mn%=mod;
ans=qm(ans+1ll*solve(1ll<<mx,now)%mod*mn%mod);
}
return ans;
}
int main() {
scanf("%lld%lld%lld%lld%d",&l1,&r1,&l2,&r2,&m);
printf("%d\n",dqm(qm(calc(r1,r2)+calc(l1-1,l2-1))-qm(calc(l1-1,r2)+calc(r1,l2-1))));
return 0;
}

【牛客提高训练营5A】同余方程的更多相关文章

  1. 牛客提高R5 A.同余方程

    题意 题目链接 Sol 设\(solve(x, y)\)表示\(i \in [0, x], j \in [0, y]\)满足题目要求的方案数 首先容斥一下,\(ans = solve(r_1, r_2 ...

  2. 【牛客提高训练营2B】分糖果

    题目 发现自己一年之前非常垃圾 题目大意是给你一个\(n\)个点的环,给每个点一个\([1,a_i]\)的取值,并且满足环上任意相连两点权值不能相等,求方案数 考虑断环为链,发现不大会 不妨考虑所有\ ...

  3. 【牛客提高训练营5B】旅游

    题目 吉老师的题时过一年还是不会做 从\(1\)号点出发经过每条边至少一次并且还要回到\(1\)号点,这跟欧拉回路的条件非常像,但是欧拉回路的实际上是"经过每一条边恰好一次并且回到出发点&q ...

  4. 牛客寒假训练营3 B 处女座的比赛资格(拓扑排序+最短路)

    题目链接 这个题,一眼看上去就是最短路的题,边权有负环显然不能用dij,然后出题人又卡了spfa,,那怎么办的想点办法啊,好像还有一个拓扑排序可以求最短路吧,这时候正解就已经得到了,就是拓扑排序求最短 ...

  5. 牛客提高集训营6 C 树(树链剖分)

    题目链接 为了纪(zhuang)念(bi)写完这个树剖单独写一篇.感觉还好,也就6k嘛. 完整比赛题解:https://www.cnblogs.com/SovietPower/p/9826829.ht ...

  6. 牛客提高D6t3 分班问题

    分析 就就就是推柿子 看官方题解吧/px 代码 #include<iostream> #include<cstdio> #include<cstring> #inc ...

  7. 牛客提高D6t2 破碎的序列

    分析 我们不难发现对于偶数的情况只要相邻两个数不相等即可 而对于奇数的情况只要中间恰好隔一个数的两个数不相等即可 于是我们又dp[i][0/1]表示考虑到第i位,这一位和它后面离它最近的一个确定的数是 ...

  8. 牛客提高D6t1 积木大赛

    分析 每次修改用二位差分记录一下 之后对于三维分别统计即可 代码 #include<iostream> #include<cstdio> #include<cstring ...

  9. 牛客提高D5t1 deco的abs

    分析 傻子题? 对d取模后随便贪心即可 代码 #include<iostream> #include<cstdio> #include<cstring> #incl ...

随机推荐

  1. Linux应急响应基础

    文件排查 敏感目录文件分析 tmp目录 命令目录 /usr/bin /usr/sbin 开机启动项 /etc/init.d /etc/init.d是/etc/rc.d/init.d的软链接 文件时间 ...

  2. python学习笔记:模块——自定义模块的3种导入方式

    一.定义 模块就是用一堆的代码实现了一些功能的代码的集合,通常一个或者多个函数写在一个.py文件里,而如果有些功能实现起来很复杂,那么就需要创建n个.py文件,这n个.py文件的集合就是模块.如果不懂 ...

  3. nmon 定时任务 监控资源

    nmon命令: # ./nmon  –f  -s 30 –c 100 说明:-f 以文件的形式输出,默认输出是机器名+日期.nmon的格式,也可以用-F指定输出的文件名,例如: # ./nmon_x8 ...

  4. 一条简单的 SQL 执行超过1000ms,纳尼?

    作者:VipAugus https://juejin.im/post/5ce906a3e51d455a2f2201dc MySQL对我说"Too young, too naive!" ...

  5. Oracle日志查看

    一.Oracle日志的路径: 登录:sqlplus "/as sysdba" 查看路径:SQL> select * from v$logfile; SQL> selec ...

  6. linux nohup python 后台运行无输出问题

    参考:https://blog.csdn.net/zj360202/article/details/78894512 nohup python test.py & nohup python t ...

  7. Java面试宝典(2)Java基础部分

    31.String s = "Hello";s = s + " world!";这两行代码执行后,原始的String对象中的内容到底变了没有? 没有.因为Str ...

  8. stdio - 标准输入输出库函数

    SYNOPSIS 总览 #include <stdio.h> FILE *stdin; FILE *stdout; FILE *stderr; DESCRIPTION 描述 标注 I/O ...

  9. JS window对象 Location对象 location用于获取或设置窗体的URL,并且可以用于解析URL。 语法: location.[属性|方法]

    Location对象 location用于获取或设置窗体的URL,并且可以用于解析URL. 语法: location.[属性|方法] location对象属性图示: location 对象属性: lo ...

  10. shell 编程四剑客简介 find sed grep awk(微信公众号摘抄)

    一,Shell编程四剑客之Find 通过如上基础语法的学习,读者对Shell编程有了更近一步的理解,Shell编程不再是简单命令的堆积,而是演变成了各种特殊的语句.各种语法.编程工具.各种命令的集合. ...