[洛谷P3145] CQOI2009 循环赛
问题描述
n队伍比赛,每两支队伍比赛一次,平1胜3负0.
给出队伍的最终得分,求多少种可能的分数表。
输入格式
第一行包含一个正整数n,队伍的个数。第二行包含n个非负整数,即每支队伍的得分。
输出格式
输出仅一行,即可能的分数表数目。保证至少存在一个可能的分数表。
样例输入
6
5 6 7 7 8 8
样例输出
121
数据范围
N<=8
解析
这么小的范围肯定是搜索啊。状态即为当前比赛是哪两支队伍在进行,搜索比分表的上三角区域(不包括对角线)。当搜索到第n行时,如果满足要求即可让答案加1。但是我们需要几个剪枝。
- 如果当前某一方加分后超过最终分数,可以剪枝。
- 如果某一方即使后面的比赛全赢也无法到达最终分数,可以剪枝。
- 如果当前是某个人的最后一场比赛,可以直接推出结果。
然后就跑过去了。
代码
#include <iostream>
#include <cstdio>
#define N 10
using namespace std;
int n,i,s[N],a[N],ans;
int read()
{
char c=getchar();
int w=0;
while(c<'0'||c>'9') c=getchar();
while(c<='9'&&c>='0'){
w=w*10+c-'0';
c=getchar();
}
return w;
}
bool check()
{
for(int i=1;i<=n;i++){
if(s[i]!=a[i]) return 0;
}
return 1;
}
void dfs(int x,int y)
{
if(x==n){
if(check()) ans++;
return;
}
if(a[x]+3*(n-y+1)<s[x]) return;
if(y==n){
if(s[x]-a[x]==1){
a[x]++;a[y]++;
dfs(x+1,x+2);
a[x]--;a[y]--;
}
else if(s[x]-a[x]==0||s[x]-a[x]==3){
int tmpx=a[x],tmpy=a[y];
a[y]+=3-(s[x]-a[x]);
a[x]=s[x];
dfs(x+1,x+2);
a[x]=tmpx,a[y]=tmpy;
}
return;
}
if(a[x]+1<=s[x]&&a[y]+1<=s[y]){
a[x]++;a[y]++;
dfs(x,y+1);
a[x]--;a[y]--;
}
if(a[x]+3<=s[x]){
a[x]+=3;
dfs(x,y+1);
a[x]-=3;
}
if(a[y]+3<=s[y]){
a[y]+=3;
dfs(x,y+1);
a[y]-=3;
}
}
int main()
{
n=read();
for(i=1;i<=n;i++) s[i]=read();
dfs(1,2);
cout<<ans<<endl;
return 0;
}
[洛谷P3145] CQOI2009 循环赛的更多相关文章
- 洛谷 P1627 [CQOI2009]中位数 解题报告
P1627 [CQOI2009]中位数 题目描述 给出1~n的一个排列,统计该排列有多少个长度为奇数的连续子序列的中位数是b.中位数是指把所有元素从小到大排列后,位于中间的数. 输入输出格式 输入格式 ...
- 洛谷 P3155 [CQOI2009]叶子的染色 解题报告
P3155 [CQOI2009]叶子的染色 题目描述 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到 ...
- 洛谷P3145 [USACO16OPEN]分割田地Splitting the Field
P3145 [USACO16OPEN]分割田地Splitting the Field 题目描述 Farmer John's NN cows (3 \leq N \leq 50,0003≤N≤50,00 ...
- 洛谷——P1627 [CQOI2009]中位数
P1627 [CQOI2009]中位数 给出1~n的一个排列,统计该排列有多少个长度为奇数的连续子序列的中位数是b.中位数是指把所有元素从小到大排列后,位于中间的数. 中位数的题目有关统计的话,可以转 ...
- [洛谷P3153] [CQOI2009]跳舞
题目大意:有n个女生,n个男生,每次一男一女跳舞.同一队只会跳一次.每个男孩最多只愿意和k个不喜欢的女孩跳舞,女孩同理.问舞会最多能有几首舞曲? 题解:二分跳了多少次舞,每次重建图,建超级原点和汇点, ...
- 【BZOJ1306】[CQOI2009]循环赛(搜索)
[BZOJ1306][CQOI2009]循环赛(搜索) 题面 BZOJ 洛谷 题解 爆搜一下,\(hash\)记录是否已经考虑过这个状态,记忆化解决问题. #include<iostream&g ...
- 洛谷P1309 瑞士轮(归并排序)
To 洛谷.1309 瑞士轮 题目背景 在双人对决的竞技性比赛,如乒乓球.羽毛球.国际象棋中,最常见的赛制是淘汰赛和循环赛.前者的特点是比赛场数少,每场都紧张刺激,但偶然性较高.后者的特点是较为公平, ...
- 洛谷1640 bzoj1854游戏 匈牙利就是又短又快
bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...
- 洛谷P1352 codevs1380 没有上司的舞会——S.B.S.
没有上司的舞会 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description Ural大学有N个职员,编号为1~N.他们有 ...
随机推荐
- Oracle Flashback Drop
Ensure that the prerequisites described in Prerequisites of Flashback Drop are met. The following li ...
- 【洛谷P1069 细胞分裂】
题目链接 首先,光看题就觉得它很扯淡(你哪里来这么多的钱来买试管) 根据某位已经ak过ioi的名为ych的神仙说(一看就是数学题,一看就需要因式分解,emm,我果然没有发现美的眼睛qwq) 那么我们就 ...
- 《图解 CSS3 核心技术与案例实战》
第一章 解开 CSS3 的面纱 使用 CSS3 的好处 减少开发和维护成本:如传统实现圆角边框需要绘图.切图才能完成,而使用 css 可以直接完成 提高页面性能 渐进增强(Progressive En ...
- DRF中的视图集的使用
1.说明:DRF框架中的视图集: 在drf开发接口中,使用GenericAPIView和视图扩展类结合起来完成接口功能是一件很常见的事情,所以,drf的作者帮我们提前把 GenericAPIView ...
- 阶段1 语言基础+高级_1-3-Java语言高级_04-集合_01 Collection集合_7_增强for循环
collections实现了interable接口.实现了interable接口就可以使用Foreach int i是临时 变量
- 解决旋转屏幕闪退在androidManifest.template.xml里,activity项添加:
解决旋转屏幕闪退在androidManifest.template.xml里,activity项添加:android:configChanges="orientation|keyboard ...
- c# 动态加载tlb为程序集
private enum RegKind { RegKind_Default = , RegKind_Register = , RegKind_None = } [DllImport("ol ...
- unity 2d 版的lookAt
void LookAt2D(Transform target) { Vector3 dir = target.position - transform.position; float angle = ...
- Hyperledger:Fabric CA 用户指南 [译]
Fabric CA 用户指南 Fabric CA 是 Hyperledger Fabric 的官方配套认证设施. 原文链接:http://hyperledger-fabric.readthedocs. ...
- Linux 重定向命令有哪些?有什么区别?
1.重定向>Linux 允许将命令执行结果重定向到一个文件,本应显示在终端上的内容保存到指定文件中.如:ls >test.txt ( test.txt 如果不存在,则创建,存在则覆盖其内容 ...