upc组队赛6 Canonical Coin Systems【完全背包+贪心】
Canonical Coin Systems
题目描述
A coin system S is a finite (nonempty) set of distinct positive integers corresponding to coin values, also called denominations, in a real or imagined monetary system. For example, the coin system in common use in Canada is {1, 5, 10, 25, 100, 200}, where 1 corresponds to a 1-cent coin and 200 corresponds to a 200-cent (2-dollar) coin. For any coin system S, we assume that there is an unlimited supply of coins of each denomination, and we also assume that S contains 1,since this guarantees that any positive integer can be written as a sum of (possibly repeated) values in S.
Cashiers all over the world face (and solve) the following problem: For a given coin system and a positive integer amount owed to a customer, what is the smallest number of coins required to dispense exactly that amount? For example, suppose a cashier in Canada owes a customer 83 cents. One possible solution is 25+25+10+10+10+1+1+1, i.e.,8 coins, but this is not optimal, since the cashier could instead dispense 25 + 25 + 25 + 5 + 1 + 1 + 1, i.e., 7 coins (which is optimal in this case). Fortunately, the Canadian coin system has the nice property that the greedy algorithm always yields an optimal solution, as do the coin systems used in most countries. The greedy algorithm involves repeatedly choosing a coin of the
largest denomination that is less than or equal to the amount still owed, until the amount owed reaches zero. A coin system for which the greedy algorithm is always optimal is called canonical.
Your challenge is this: Given a coin system S = {c1, c2, . . . , cn }, determine whether S is canonical or non-canonical. Note that if S is non-canonical then there exists at least one counterexample, i.e., a positive integer x such that the minimum number of coins required to dispense exactly x is less than the number of coins used by the greedy algorithm. An example of a non-canonical coin system is {1, 3, 4}, for which 6 is a counterexample, since the greedy algorithm yields 4 + 1 + 1 (3 coins), but an optimal solution is 3 + 3 (2 coins). A useful fact (due to Dexter Kozen and Shmuel Zaks) is that if S is non-canonical, then the smallest counterexample is less than the sum of the two largest denominations.
输入
Input consists of a single case. The first line contains an integer n (2 ≤ n ≤ 100), the number of denominations in the coin system. The next line contains the n denominations as space-separated integers c1 c2 . . . cn, where c1 = 1 and c1 < c2 < . . . < cn ≤ 106.
输出
Output “canonical” if the coin system is canonical, or “non-canonical” if the coin system is non-canonical.
样例输入
4
1 2 4 8
样例输出
canonical
题意
有n种面额的货币,如果能保证所以金额,用贪心思想算出的货币张数(每次减先大面额的货币)和 正确的货币张数是相同的,就是规范的(输出canonical),如果贪心算出的货币张数比正确算出的多,那就是不规范的(输出non-canonical)
题解
正确的货币张数可以通过完全背包算出 转移方程 dp[i] = d[i - a[j] ] + 1;(dp[i]代表剩余金额为i时已经拥有的张数,a[j]代表第j张钱的面额)
代码
#include<bits/stdc++.h>
using namespace std;
#define pb push_back
#define mp make_pair
#define rep(i,a,n) for(int i=a;i<n;++i)
#define readc(x) scanf("%c",&x)
#define read(x) scanf("%d",&x)
#define sca(x) scanf("%d",&x)
#define read2(x,y) scanf("%d%d",&x,&y)
#define read3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define print(x) printf("%d\n",x)
#define mst(a,b) memset(a,b,sizeof(a))
#define lowbit(x) x&-x
#define lson(x) x<<1
#define rson(x) x<<1|1
#define pb push_back
#define mp make_pair
typedef long long ll;
typedef pair<ll,ll> P;
const int INF =0x3f3f3f3f;
const int inf =0x3f3f3f3f;
const int mod = 1e9+7;
const int MAXN = 105;
const int maxn =2000010;
using namespace std;
int n;
int a[maxn],dp[maxn];
int main(){
sca(n);
for(int i = 0; i < n; i++)
sca(a[i]);
sort(a,a+n);
int maxl = a[n - 1] * 2;
for(int i = 0; i < maxl; i++) dp[i] = INF;
dp[0] = 0;
int flag = 1;
for(int i = 1; i < maxl; i++){
for(int j = 0; j < n; j++){
if(a[j] <= i)
dp[i] = min(dp[i], dp[i - a[j]] + 1); //背包
}
int cnt = 0;
int sum = i;
int pos = n - 1;
while(sum){ //贪心
while(sum >= a[pos]){
sum -= a[pos];
cnt ++;
}
pos--;
}
if(cnt > dp[i]) flag = 0; //不等就是不规范
}
if(flag) printf("canonical\n");
else printf("non-canonical\n");
return 0;
}
upc组队赛6 Canonical Coin Systems【完全背包+贪心】的更多相关文章
- Canonical Coin Systems【完全背包】
问题 C: Canonical Coin Systems 时间限制: 1 Sec 内存限制: 128 MB 提交: 200 解决: 31 [提交] [状态] [命题人:admin] 题目描述 A ...
- 集训第四周(高效算法设计)L题 (背包贪心)
Description John Doe is a famous DJ and, therefore, has the problem of optimizing the placement of ...
- uva674 Coin Change ——完全背包
link:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVA-674 Coin Change---完全背包
题目链接: https://vjudge.net/problem/UVA-674 题目大意: 有5种硬币, 面值分别为1.5.10.25.50,现在给出金额,问可以用多少种方式组成该面值. 思路: 每 ...
- Light oj 1233 - Coin Change (III) (背包优化)
题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1233 题目就不说明了. 背包的二进制优化,比如10可以表示为1 2 4 3,而 ...
- [luoguP1474] 货币系统 Money Systems(背包)
传送门 背包 ——代码 #include <cstdio> #include <iostream> #define LL long long int v, n; LL f[10 ...
- codeforces 284 E. Coin Troubles(背包+思维)
题目链接:http://codeforces.com/contest/284/problem/E 题意:n种类型的硬币,硬币的面值可能相同,现在要在满足一些限制条件下求出,用这些硬币构成t面值的方案数 ...
- upc组队赛17 Bits Reverse【暴力枚举】
Bits Reverse 题目链接 题目描述 Now given two integers x and y, you can reverse every consecutive three bits ...
- upc组队赛3 Chaarshanbegaan at Cafebazaar
Chaarshanbegaan at Cafebazaar 题目链接 http://icpc.upc.edu.cn/problem.php?cid=1618&pid=1 题目描述 Chaars ...
随机推荐
- 项目搭建(三):自定义DLL
说明:程序中有些自定义的控件类型在TestStack.White框架中没有涉及,需要引入自定义的DLL,通过鼠标点击事件处理 使用:将自定义的ClassLibrary2.dll拷贝到项目/bin/de ...
- 基于Diff机制的多个状态合并
1. 场景 假设一个系统System在某一时刻的状态可以用State A来表示[State里面包含着一些元素的集合]: 1: State A = [element_0, element_1,……,el ...
- 嵌入式C语言3.5 关键字---运算符
1. 算数运算符 + - A +/- B 要求A,B数据类型一致 * 乘法 / 除法 %取模 乘法CPU可能需要多个周期,甚至需要利用软件的模拟方法来实 ...
- fiddler如何抓取https接口
1.Fiddler工作原理: Fiddler 是以代理 web 服务器的形式工作的,它使用代理地址:127.0.0.1端口:8888. 当 Fiddler 退出的时候它会自动注销,这样就不会影响 ...
- Fiddler之iOS手机抓包代理设置
一.前置步骤:官网下载并安装好 二.设置iOS手机代理到windows电脑 1.打开Fiddler,点击上方Tools,进入Options,选择HTTPS,按下图设置 2.fiddler默认监听端口8 ...
- 43.Word Break(看字符串是否由词典中的单词组成)
Level: Medium 题目描述: Given a non-empty string s and a dictionary wordDict containing a list of non- ...
- android 查看网络图片
public class MainActivity extends Activity { private EditText pathText; private ImageView imageView; ...
- WPF的Effect效果
一.阴影效果(DropShadowEffect) <TextBlock Text="> <TextBlock.Effect> <DropShadowEffect ...
- mysql基于GTIDS复制
GTIDS的环境:一台master 192.168.200.111多个slave: 192.168.200.112 192.168.200.113 修改master服务器:[root@localhos ...
- python 常用技巧 — 列表(list)
目录: 1. 嵌套列表对应位置元素相加 (add the corresponding elements of nested list) 2. 多个列表对应位置相加(add the correspond ...