python数据类
前言
之前有写过一篇python元类的笔记,元类主要作用就是在要创建的类中使用参数metaclass=YourMetaclass
调用自定义的元类,这样就可以为所有调用了这个元类的类添加相同的属性了。
本篇笔记主要是对dataclass
的特性作了解和对参考文章的总结摘要,完整文章地址:https://realpython.com/python-data-classes/
python数据类初识
用docker拉个python:3.7的镜像作为实验环境
- 使用dataclass装饰器创建数据类
>>> from dataclasses import dataclass
>>> @dataclass
... class DataClassTest:
... first_name: str
... last_name: str
...
>>> p = DataClassTest('vickey', 'wu')
>>> p.first_name
'vickey'
>>> p.last_name
'wu'
>>> p
DataClassTest(first_name='vickey', last_name='wu')
>>> p == DataClassTest('vickey', 'wu')
True
>>> p.first_name = 'wiki'
>>> p
DataClassTest(first_name='wiki', last_name='wu')
从上面例子可以看到,如果使用dataclass
装饰器来定义数据类,则必须声明参数类型,数据类默认可以修改参数的值类型,如果不希望更改则使用@dataclass(frozen=True)
即可,这样上面的 参数值就不可更改了,更改会报错dataclasses.FrozenInstanceError: cannot assign to field 'first_name'
。
当不确定参数到底用哪种类型,或可以是多种类型时则可以用下面的Any
来声明
>>> from dataclasses import dataclass
>>> from typing import Any
>>> @dataclass
... class W:
... n:Any
... v: float = 18
...
>>> w = W('vickey')
>>> w
W(n='vickey', v=18)
>>> w = W(19)
>>> w
W(n=19, v=18)
- 不使用dataclass装饰器的普通类
>>> class RegularClassTest:
... def __init__(self, first_name, last_name):
... self.first_name = first_name
... self.last_name = last_name
...
>>> pp = RegularClassTest('vickey', 'wu')
>>> pp.first_name
'vickey'
>>> pp.last_name
'wu'
>>> pp
<__main__.RegularClassTest object at 0x7f5f66a49550>
>>> pp == RegularClassTest('vickey', 'wu')
False
从1和2两个例子对比可以看出,使用@dataclass
后有几个优势(不限于此):
- 无需定义
__init__
函数,只需定义参数及参数类型即可。 - 打印出来的对象描述信息更清晰了。而未使用
dataclass
的类需要再添加__repr__
函数显示才友好。(看下面的例子) - 实例化后的实例可以用
==
判断出是否与类实例相等,而未使用dataclass
的类需要再添加__eq__
函数才能判断。(看下面的例子)
3 不使用dataclass装饰器实现数据类相同功能
>>> class RegularClassTest2:
... def __init__(self, first_name, last_name):
... self.first_name = first_name
... self.last_name = last_name
... def __repr__(self):
... return (f'{self.__class__.__name__}'
... f'(first_name={self.first_name!r}, last_name={self.last_name!r})')
... def __eq__(self, other):
... if other.__class__ is not self.__class__:
... return NotImplemented
... return (self.first_name, self.last_name) == (other.first_name, other.last_name)
...
>>> r = RegularClassTest2('2', '1')
>>> r
RegularCard(first_name='2', last_name='1')
>>> r == RegularClassTest2('2', '1')
True
>>>
通过在普通类中添加__repr__
和__eq__
就可以具有上面提到的数据类的第2,3个优势,但还是需要__init__
函数。虽然上面提到不使用dataclass
也可以达到部分效果,参考文章作者也说明了各自的好处与不足,感兴趣的童鞋查看原文,这里就不记录了。
数据类参数调用函数赋值
from dataclasses import dataclass, field
from typing import List
# 数据类rank参数为牌大小,suit为花色
@dataclass
class PlayingCard:
rank: str
suit: str
# 生成13牌的4种花色
RANKS = '2 3 4 5 6 7 8 9 10 J Q K A'.split()
SUITS = '♣ ♢ ♡ ♠'.split()
def make_french_deck():
print([PlayingCard(r, s) for s in SUITS for r in RANKS])
print('################## list generated by fuction make_french_deck')
return [PlayingCard(r, s) for s in SUITS for r in RANKS]
# 参考源码typing.List
# List(yourclass):https://docs.python.org/3/library/typing.html#typing.ForwardRef
# 使用field的default_factory调用参数名为make_french_deck的函数,这个函数会生成一个list,然后赋值参数cards
@dataclass
class Deck:
cards: List[PlayingCard] = field(default_factory=make_french_deck)
print('################# called class Deck with para cards')
print(Deck())
- output
################# called class Deck with para cards
[PlayingCard(rank='2', suit='♣'), PlayingCard(rank='3', suit='♣'), PlayingCard(rank='4', suit='♣'), PlayingCard(rank='5', suit='♣'), PlayingCard(rank='6', suit='♣'), PlayingCard(rank='7', suit='♣'), PlayingCard(rank='8', suit='♣'), PlayingCard(rank='9', suit='♣'), PlayingCard(rank='10', suit='♣'), PlayingCard(rank='J', suit='♣'), PlayingCard(rank='Q', suit='♣'), PlayingCard(rank='K', suit='♣'), PlayingCard(rank='A', suit='♣'), PlayingCard(rank='2', suit='♢'), PlayingCard(rank='3', suit='♢'), PlayingCard(rank='4', suit='♢'), PlayingCard(rank='5', suit='♢'), PlayingCard(rank='6', suit='♢'), PlayingCard(rank='7', suit='♢'), PlayingCard(rank='8', suit='♢'), PlayingCard(rank='9', suit='♢'), PlayingCard(rank='10', suit='♢'), PlayingCard(rank='J', suit='♢'), PlayingCard(rank='Q', suit='♢'), PlayingCard(rank='K', suit='♢'), PlayingCard(rank='A', suit='♢'), PlayingCard(rank='2', suit='♡'), PlayingCard(rank='3', suit='♡'), PlayingCard(rank='4', suit='♡'), PlayingCard(rank='5', suit='♡'), PlayingCard(rank='6', suit='♡'), PlayingCard(rank='7', suit='♡'), PlayingCard(rank='8', suit='♡'), PlayingCard(rank='9', suit='♡'), PlayingCard(rank='10', suit='♡'), PlayingCard(rank='J', suit='♡'), PlayingCard(rank='Q', suit='♡'), PlayingCard(rank='K', suit='♡'), PlayingCard(rank='A', suit='♡'), PlayingCard(rank='2', suit='♠'), PlayingCard(rank='3', suit='♠'), PlayingCard(rank='4', suit='♠'), PlayingCard(rank='5', suit='♠'), PlayingCard(rank='6', suit='♠'), PlayingCard(rank='7', suit='♠'), PlayingCard(rank='8', suit='♠'), PlayingCard(rank='9', suit='♠'), PlayingCard(rank='10', suit='♠'), PlayingCard(rank='J', suit='♠'), PlayingCard(rank='Q', suit='♠'), PlayingCard(rank='K', suit='♠'), PlayingCard(rank='A', suit='♠')]
################## list generated by fuction make_french_deck
Deck(cards=[PlayingCard(rank='2', suit='♣'), PlayingCard(rank='3', suit='♣'), PlayingCard(rank='4', suit='♣'), PlayingCard(rank='5', suit='♣'), PlayingCard(rank='6', suit='♣'), PlayingCard(rank='7', suit='♣'), PlayingCard(rank='8', suit='♣'), PlayingCard(rank='9', suit='♣'), PlayingCard(rank='10', suit='♣'), PlayingCard(rank='J', suit='♣'), PlayingCard(rank='Q', suit='♣'), PlayingCard(rank='K', suit='♣'), PlayingCard(rank='A', suit='♣'), PlayingCard(rank='2', suit='♢'), PlayingCard(rank='3', suit='♢'), PlayingCard(rank='4', suit='♢'), PlayingCard(rank='5', suit='♢'), PlayingCard(rank='6', suit='♢'), PlayingCard(rank='7', suit='♢'), PlayingCard(rank='8', suit='♢'), PlayingCard(rank='9', suit='♢'), PlayingCard(rank='10', suit='♢'), PlayingCard(rank='J', suit='♢'), PlayingCard(rank='Q', suit='♢'), PlayingCard(rank='K', suit='♢'), PlayingCard(rank='A', suit='♢'), PlayingCard(rank='2', suit='♡'), PlayingCard(rank='3', suit='♡'), PlayingCard(rank='4', suit='♡'), PlayingCard(rank='5', suit='♡'), PlayingCard(rank='6', suit='♡'), PlayingCard(rank='7', suit='♡'), PlayingCard(rank='8', suit='♡'), PlayingCard(rank='9', suit='♡'), PlayingCard(rank='10', suit='♡'), PlayingCard(rank='J', suit='♡'), PlayingCard(rank='Q', suit='♡'), PlayingCard(rank='K', suit='♡'), PlayingCard(rank='A', suit='♡'), PlayingCard(rank='2', suit='♠'), PlayingCard(rank='3', suit='♠'), PlayingCard(rank='4', suit='♠'), PlayingCard(rank='5', suit='♠'), PlayingCard(rank='6', suit='♠'), PlayingCard(rank='7', suit='♠'), PlayingCard(rank='8', suit='♠'), PlayingCard(rank='9', suit='♠'), PlayingCard(rank='10', suit='♠'), PlayingCard(rank='J', suit='♠'), PlayingCard(rank='Q', suit='♠'), PlayingCard(rank='K', suit='♠'), PlayingCard(rank='A', suit='♠')])
上面的例子是类Deck
调用了类外的一个函数make_french_deck
来生成一个类Deck
的列表类型参数cards
,这个列表由传入类PlayingCard
不同参数rank
和suit
而生成的类PlayingCard
调用列表。这样就生成了13牌的4种花色的所有值。
数据类的继承
from dataclasses import dataclass
@dataclass
class Position:
name: str
lon: float = 0.0
lat: float = 0.0
@dataclass
class Capital(Position):
# 因为父类参数有默认值,所以子类的参数必须定义默认值,否则报错
# country: str
country: str = 'Unknown'
# 可以在子类重新定义父类的参数默认值
lat: float = 40.0
- 如果父类参数有默认值,子类的所有参数必须定义默认值,否则报错:
TypeError: non-default argument 'country' follows default argument
。报错原因相当于在子类初始化时def __init__(name: str, lon: float = 0.0, lat: float = 0.0, country: str):
非默认参数没有在默认参数前面,因为python规定非默认参数必须在默认参数前面。 - 参数的顺序按照父类顺序,然后子类参数顺序。
总结
- 数据类是Python3.7的新特性之一。使用数据类就不必编写样板代码来为对象获得适当的
初始化__init__,表示__repr__,和比较__eq__
。 - 数据类参数必须声明参数类型,参数可以使用函数赋值。
- 在继承时如果父类参数有定义默认值,则子类参数必须也要定义默认值,继承后的参数顺序为父类参数,然后到子类参数。
- 除此之外,数据类和普通类区别不大,数据类定义参数后像普通类一样定义实例方法,一样调用。
公众号往期文章
python内置装饰器
python装饰器
scrapy-redis debug视频
scrapy-redis源码浅析
scrapy过滤重复数据和增量爬取
redis基础笔记
scrapy电影天堂实战(二)创建爬虫项目
scrapy电影天堂实战(一)创建数据库
scrapy基础笔记
在docker镜像中加入环境变量
笔记 | mongodb 入门操作
笔记 | python元类
笔记 | python2和python3使用super()
那些你在python3中可能没用到但应该用的东西
superset docker 部署
开机启动容器里面的程序
博客 | 三步部署hitchhiker-api
python数据类的更多相关文章
- python数据类型和3个重要函数
Python中所有变量都是值的引用,也就说变量通过绑定的方式指向其值. 而这里说的不可变指的是值的不可变. 对于不可变类型的变量,如果要更改变量,则会创建一个新值,把变量绑定到新值上,而旧值如果没有被 ...
- python基础——类和实例
python基础——类和实例 面向对象最重要的概念就是类(Class)和实例(Instance),必须牢记类是抽象的模板,比如Student类,而实例是根据类创建出来的一个个具体的“对象”,每个对象都 ...
- 从C#到Python —— 4 类及面向对象
http://www.cnblogs.com/yanxy/archive/2010/04/04/c2p_4.html 如果你熟悉C#,那么对类(Class)和面向对象(Object Oriented) ...
- python元类分析
刚開始接触到Python新式类中的元类的概念的时候非常是纠结了下..不知道这是个啥东西... 用下面几个定义来说明吧: (1)Python中,类也是对象..仅仅只是这样的对象比較的特殊,他用于创建别的 ...
- Python基础-类
Python基础-类 @(Python)[python, python基础] 写在前面 如非特别说明,下文均基于Python3 摘要 本文重点讲述如何创建和使用Python类,绑定方法与非绑定方法的区 ...
- Python数据可视化——使用Matplotlib创建散点图
Python数据可视化——使用Matplotlib创建散点图 2017-12-27 作者:淡水化合物 Matplotlib简述: Matplotlib是一个用于创建出高质量图表的桌面绘图包(主要是2D ...
- 【数据科学】Python数据可视化概述
注:很早之前就打算专门写一篇与Python数据可视化相关的博客,对一些基本概念和常用技巧做一个小结.今天终于有时间来完成这个计划了! 0. Python中常用的可视化工具 Python在数据科学中的地 ...
- python数据格式化之pprint
python数据格式化之pprint 2017年06月17日 13:56:33 阅读数:2291 简介 pprint模块 提供了打印出任何Python数据结构类和方法. 模块方法: 1.class p ...
- python - class类 (四) 三大特性之一 :继承
继承: #继承 #什么时候用继承? # 1.当类之间有显著的不同,并且较小的类是较大的类的所需的组建时,用组合比较好. # 2.当类之间有很多相同的功能,提取这些共同的功能做成基类,用继承比较好 # ...
随机推荐
- 10、应用机器学习的建议(Advice for Applying Machine Learning)
10.1 决定下一步做什么 到目前为止,我们已经介绍了许多不同的学习算法,如果你一直跟着这些视频的进度学习,你会发现自己已经不知不觉地成为一个了解许多先进机器学习技术的专家了. 然而,在懂机器学习的人 ...
- 什么是http协议??
一.http协议的定义: http(Hypertext transfer protocol)超文本传输协议,通过浏览器和服务器进行数据交互,进行超文本(文本.图片.视频等)传输的规定.也就是说,htt ...
- IOC详解
Ioc--控制反转详解(转载 http://www.cnblogs.com/qinqinmeiren/archive/2011/04/02/2151697.html) 本文转载与百度知道,简单例子让 ...
- JAVA一个文件写多个类
JAVA一个文件写多个类,并且是同级类,需注意: 在一个.java文件中可以有多个同级类, 其修饰符只可以public/abstract/final/和无修饰符 public修饰的只能有一个,且必须 ...
- 在a标签中使用了onclick修改样式之后a:hover失效
是因为优先级的原因造成,使用!important修改优先级. 如修改成: .button1:hover { color: #FFF !important; ...
- SSM中前台传数组。后台接受的问题
当时写得时候,忘记考虑json的jar,做个记录. 第一步:先带入jar <dependency> <groupId>com.fasterxml.jackson.core< ...
- 【LeetCode】位运算 bit manipulation(共32题)
[78]Subsets 给了一个 distinct 的数组,返回它所有的子集. Example: Input: nums = [,,] Output: [ [], [], [], [,,], [,], ...
- ps:矢量格式图像
假设我们写了一首新的乐曲,要把它交给唱片公司,可以通过两种方式: 把这首乐曲弹奏出来并录制在磁带上. 把这首乐曲的乐谱写下来. 这两种方式的最大区别在于记录的形式. 前者是记述性的.包含乐曲的音频信息 ...
- SpringBoot---异步消息
1.概述 1.1.SpringBoot 对 JMS 的自动配置 位于 org.springframework.boot.autoconfigure.jms下: 1.2.SpringBoot 支 ...
- kwargs - Key words arguments in python function
This is a tutorial of how to use *args and **kwargs For defining the default value of arguments that ...