POJ 1625 Censored ( Trie图 && DP && 高精度 )
题意 : 给出 n 个单词组成的字符集 以及 p 个非法串,问你用字符集里面的单词构造长度为 m 的单词的方案数有多少种?
分析 :先构造出 Trie 图方便进行状态转移,这与在 POJ 2278 中的步骤是一样的,只不过最后的DP状态转移方式 2778 是利用了矩阵进行转移的,那是因为需要构造的串的长度非常长!只能利用矩阵转移。但是这道题需要构造的串的长度最多也就只有 50 ,可以利用普通的DP方法进行转移。我们定义 DP[i][j] 为以长度为 i 以字符 j 为结尾的串的种类数是多少,那么状态转移方程很显然就是 DP[i+1][k] += DP[i][j] * G[j][k] 这个方程表示现在 k 到 j 有一条边并且从k 走一步可以到 j 的方案数是 G[j][k] ( Trie 图构建出来的 ),那么现在 DP[i+1][k] 就很明显可以从 DP[i][j] 转移而来,DP的初始状态为 DP[0][0] = 0 && DP[0][i] = 0。
注意 :
① 因为没有要求对答案进行求模运算,答案可能很大,因为如果 p = 0,而n 和 m 都达到最大的50,那么答案就是 50^50,所以需要用到高精度。
② 字符可能有超过 128 的,也就是有负数情况,用map转化
#include<string.h>
#include<stdio.h>
#include<iostream>
#include<queue>
#include<map>
using namespace std;
const int Max_Tot = ;
const int Letter = ;
int G[][], n;
map<int, int> mp;
struct bign{
#define MAX_B (100)
#define MOD (10000)
int a[MAX_B], n;
bign() { a[] = , n = ; }
bign(int num)
{
n = ;
do {
a[n++] = num % MOD;
num /= MOD;
} while(num);
}
bign& operator= (int num)
{ return *this = bign(num); }
bign operator+ (const bign& b) const
{
bign c = bign();
int cn = max(n, b.n), d = ;
for(int i = , x, y; i < cn; i++)
{
x = (n > i) ? a[i] : ;
y = (b.n > i) ? b.a[i] : ;
c.a[i] = (x + y + d) % MOD;
d = (x + y + d) / MOD;
}
if(d) c.a[cn++] = d;
c.n = cn;
return c;
}
bign& operator+= (const bign& b)
{
*this = *this + b;
return *this;
}
bign operator* (const bign& b) const
{
bign c = bign();
int cn = n + b.n, d = ;
for(int i = ; i <= cn; i++)
c.a[i] = ;
for(int i = ; i < n; i++)
for(int j = ; j < b.n; j++)
{
c.a[i + j] += a[i] * b.a[j];
c.a[i + j + ] += c.a[i + j] / MOD;
c.a[i + j] %= MOD;
}
while(cn > && !c.a[cn-]) cn--;
if(!cn) cn++;
c.n = cn;
return c;
}
friend ostream& operator<< (ostream& _cout, const bign& num)
{
printf("%d", num.a[num.n - ]);
for(int i = num.n - ; i >= ; i--)
printf("%04d", num.a[i]);
return _cout;
}
};
struct Aho{
struct StateTable{
int Next[Letter];
int fail, flag;
}Node[Max_Tot];
int Size;
queue<int> que; inline void init(){
while(!que.empty()) que.pop();
memset(Node[].Next, , sizeof(Node[].Next));
Node[].fail = Node[].flag = ;
Size = ;
} inline void insert(char *s){
int now = ;
for(int i=; s[i]; i++){
int idx = mp[s[i]];
if(!Node[now].Next[idx]){
memset(Node[Size].Next, , sizeof(Node[Size].Next));
Node[Size].fail = Node[Size].flag = ;
Node[now].Next[idx] = Size++;
}
now = Node[now].Next[idx];
}
Node[now].flag = ;
} inline void BuildFail(){
Node[].fail = ;
for(int i=; i<n; i++){
if(Node[].Next[i]){
Node[Node[].Next[i]].fail = ;
que.push(Node[].Next[i]);
}else Node[].Next[i] = ;///必定指向根节点
}
while(!que.empty()){
int top = que.front(); que.pop();
if(Node[Node[top].fail].flag) Node[top].flag = ;
for(int i=; i<n; i++){
int &v = Node[top].Next[i];
if(v){
que.push(v);
Node[v].fail = Node[Node[top].fail].Next[i];
}else v = Node[Node[top].fail].Next[i];
}
}
} inline void BuildMap(){
for(int i=; i<Size; i++)
for(int j=; j<Size; j++)
G[i][j] = ; for(int i=; i<Size; i++){
for(int j=; j<n; j++){
if(!Node[ Node[i].Next[j] ].flag)
G[i][Node[i].Next[j]]++;
}
}
}
}ac; #define MAX_M (55)
bign dp[MAX_M][Max_Tot]; char s[];
int main(void)
{
int m, p;
while(~scanf("%d %d %d\n", &n, &m, &p)){
mp.clear();
gets(s);
int len = strlen(s);
for(int i=; i<len; i++)
mp[s[i]] = i; ac.init();
for(int i=; i<p; i++){
gets(s);
ac.insert(s);
}
ac.BuildFail();
ac.BuildMap(); for(int i=; i<=m; i++)
for(int j=; j<ac.Size; j++)
dp[i][j] = bign(); dp[][] = ;
for(int i=; i<m; i++)
for(int j=; j<ac.Size; j++){
for(int k=; k<ac.Size; k++){
dp[i+][k] += dp[i][j] * G[j][k];
}
} bign ans = bign(); for(int i=; i<ac.Size; i++)
ans += dp[m][i]; cout<<ans<<endl;
}
return ;
}
POJ 1625 Censored ( Trie图 && DP && 高精度 )的更多相关文章
- POJ 1625 Censored!(AC自动机+DP+高精度)
Censored! Time Limit: 5000MS Memory Limit: 10000K Total Submissions: 6956 Accepted: 1887 Descrip ...
- POJ 1625 Censored!(AC自动机+高精度+dp)
http://poj.org/problem?id=1625 题意: 给出一些单词,求长度为m的串不包含这些单词的个数. 思路: 这道题和HDU 2243和POJ 2778是一样的,不同的是这道题不取 ...
- Censored! - POJ 1625(ac自动机+简单dp+高精度运算)
题目大意:首先给一个字符集合,这个集合有N个字符,然后需要一个长度为M的句子,但是据子里面不能包含的串有P个,每个串里面的字符都是有字符集和里面的字符构成的,现在想知道最多能构造多少个不重复的句子. ...
- 【Trie图+DP】BZOJ1030[JSOI2007]-文本生成器
[题目大意] 给出单词总数和固定的文章长度M,求出至少包含其中一个单词的可能文章数量. [思路] 对于至少包含一个的类型,我们可以考虑补集.也就是等于[总的文章可能性总数-不包含任意一个单词的文章总数 ...
- POJ 3691 DNA repair ( Trie图 && DP )
题意 : 给出 n 个病毒串,最后再给出一个主串,问你最少改变主串中的多少个单词才能使得主串中不包含任何一个病毒串 分析 : 做多了AC自动机的题,就会发现这些题有些都是很套路的题目.在构建 Trie ...
- POJ 1625 Censored!(大数+DP)
题目链接 这题,真心木啥意思,就是数据里貌似字符有负数,注意gets读入.. #include <iostream> #include <cstring> #include & ...
- HDU 2296 Ring ( Trie图 && DP && DP状态记录)
题意 : 给出 m 个单词,每一个单词有一个权重,如果一个字符串包含了这些单词,那么意味着这个字符串拥有了其权重,问你构成长度为 n 且权重最大的字符串是什么 ( 若有权重相同的,则输出最短且字典序最 ...
- hdu2457 Trie图+dp
hdu2457 给定n个模式串, 和一个文本串 问如果修改最少的字符串使得文本串不包含模式串, 输出最少的次数,如果不能修改成功,则输出-1 dp[i][j] 表示长度为i的字符串, 到达状态j(Tr ...
- BZOJ1212: [HNOI2004]L语言(Trie图+DP)
Description 标点符号的出现晚于文字的出现,所以以前的语言都是没有标点的.现在你要处理的就是一段没有标点的文章. 一段文章T是由若干小写字母构成.一个单词W也是由若干小写字母构成.一个字典D ...
随机推荐
- 网络架构,七层协议,三次握手四次挥手,socket套接字简单编程
一.单机架构 应用领域: 植物大战僵尸 office 二.CS架构 应用领域: QQ 大型网络游戏 计算机发展初期用户去取数据,直接就去主机拿,从这里开始就分出了客户端和服务端. 客户端:用户安装的软 ...
- Druid + spring 配置数据库连接池
1. Druid的简介 Druid是一个数据库连接池.Druid是目前最好的数据库连接池,在功能.性能.扩展性方面,都超过其他数据库连接池,包括DBCP.C3P0.BoneCP.Proxool.JBo ...
- 优化 Karatsuba 乘法(老物)
虽然写好了我自己用的a*启发函数但还是有些不尽人意,如果通过数学分析确定不出问题可以工作了的话应该就会发出来了 // Karatsuba 递归式距离推导 // h(x) = f(x) * g(x):/ ...
- setInterval 定时器
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 日语能力考试N2级必备外来语
日语能力考试N2级必备外来语 ア行外来语アンテナ:(antenna) 天线インタビュー :(interview) 采访,访谈ウイルス:(virus ) 病 ...
- Linux查看及设置系统时区
一.什么是时区呢? 关于时区的概念,其实初中地理课已经涉及,很多人都多少了解一些,可能只是细节搞不太清楚.为什么会将地球分为不同时区呢?因为地球总是自西向东自转,东边总比西边先看到太阳,东边的时间也总 ...
- host - 使用域名服务器查询主机名字
SYNOPSIS (总览) host [-l ] [-v ] [-w ] [-r ] [-d ] [-t querytype ] [-a ] host [server ] DESCRIPTION (描 ...
- inux下:热插拔和模块是什么
一.何为模块? 文件系统.设备驱动程序.网络协议都可以理解为模块.模块本质也是普通的软件系统. 二.热插拔 硬件层面:只在不断电.不关闭系统的情况下增加或者删除对应部件,比如电源.硬盘.一些高端设备硬 ...
- 文件I/O编程 (fcntl)
Fcntl函数语法要点所需头文件:#include #include #include函数原型:int fcntl(int fd,cmd,struct flock ...
- 索引介绍,转载自:https://tech.meituan.com/2014/06/30/mysql-index.html
索引原理 除了词典,生活中随处可见索引的例子,如火车站的车次表.图书的目录等.它们的原理都是一样的,通过不断的缩小想要获得数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的事件,也就是我们总 ...