分析

我们让每个数列在第一个取到最大前缀和的位置被统计到。

假设一个数列在\(pos\)处第一次取到最大前缀和,分析性质,有:

  1. 下标在\([1,pos]\)之间的数形成的数列的每个后缀和(不包括整个数列,因为要求非空)都大于\(0\)。

  2. 下标在\([pos+1,n]\)之间的数形成的数列的每个前缀和(包括整个数列)都小于等于\(0\)。

正确性显然。

所以我们可以把数列从\(pos\)分成两部分,分别算出各自的方案数再相乘。

\([1,pos]\)部分

令\(f[S]\)表示\(S\)中的数形成的每个后缀和都大于\(0\)的数列个数,考虑每次向一个数后面加一个满足条件的数列,有状态转移方程:

\[f[\{i\}+S]+=f[S]\ (i \notin S,\ sum[S]>0)
\]

\([pos+1,n]\)部分

令\(g[S]\)表示\(S\)中的数形成的每个前缀和都小于等于\(0\)的数列个数,考虑每次向一个满足条件的数列后面加一个数,有状态转移方程:

\[g[S+\{i\}]+=g[S]\ (i \notin S,\ sum[S] \leq 0,\ sum[S+\{i\}] \leq 0)
\]

统计答案的话好像没什么好说的。

代码

#include <bits/stdc++.h>

#define rin(i,a,b) for(int i=(a);i<=(b);++i)
#define irin(i,a,b) for(int i=(a);i>=(b);--i)
#define trav(i,a) for(int i=head[a];i;i=e[i].nxt)
#define Size(a) (int)a.size()
#define pb push_back
#define mkpr std::make_pair
#define fi first
#define se second
#define lowbit(a) ((a)&(-(a)))
typedef long long LL; using std::cerr;
using std::endl; inline int read(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}
return x*f;
} const int MOD=998244353; int n,a[25],b[1<<20],f[1<<20],g[1<<20];
LL sum[1<<20]; inline int add(int x,int y){
return x+y<MOD?x+y:x+y-MOD;
} int main(){
n=read();
rin(i,1,n)a[i]=b[1<<(i-1)]=read(),f[1<<(i-1)]=1;
rin(i,1,(1<<n)-1)sum[i]=sum[i-lowbit(i)]+b[lowbit(i)];
rin(i,1,(1<<n)-1)if(sum[i]>0){
int r=(((1<<n)-1)^i);
while(r){
f[i|lowbit(r)]=add(f[i|lowbit(r)],f[i]);
r-=lowbit(r);
}
}
g[0]=1;
rin(i,0,(1<<n)-1)if(sum[i]<=0){
int r=(((1<<n)-1)^i);
while(r){
if(sum[i|lowbit(r)]<=0)g[i|lowbit(r)]=add(g[i|lowbit(r)],g[i]);
r-=lowbit(r);
}
}
int ans=0;
rin(i,0,(1<<n)-1)ans=(ans+1ll*sum[i]*f[i]%MOD*g[((1<<n)-1)^i])%MOD;
printf("%d\n",(ans%MOD+MOD)%MOD);
return 0;
}

[LOJ6433][PKUSC2018]最大前缀和:状压DP的更多相关文章

  1. [PKUSC2018]最大前缀和——状压DP

    题目链接: [PKUSC2018]最大前缀和 设$f[S]$表示二进制状态为$S$的序列,任意前缀和都小于等于$0$的方案数. 设$g[S]$表示二进制状态为$S$的序列是整个序列的最大前缀和的方案数 ...

  2. 【PKUSC2018】【loj6433】最大前缀和 状压dp

    这题吼啊... 然而还是想了$2h$,写了$1h$. 我们发现一个性质:若一个序列$p$能作为前缀和,那么在序列$p$中,包含序列$p$最后一个数的所有子序列必然都是非负的. 那么,我们 令$f[i] ...

  3. BZOJ5369:[PKUSC2018]最大前缀和(状压DP)

    Description 小C是一个算法竞赛爱好者,有一天小C遇到了一个非常难的问题:求一个序列的最大子段和. 但是小C并不会做这个题,于是小C决定把序列随机打乱,然后取序列的最大前缀和作为答案. 小C ...

  4. LOJ#6433. 「PKUSC2018」最大前缀和 状压dp

    原文链接https://www.cnblogs.com/zhouzhendong/p/LOJ6433.html 题解 枚举一个集合 S ,表示最大前缀和中包含的元素集为 S ,然后求出有多少个排列是这 ...

  5. LOJ 6433 「PKUSC2018」最大前缀和——状压DP

    题目:https://loj.ac/problem/6433 想到一个方案中没有被选的后缀满足 “该后缀的任一前缀和 <=0 ”. 于是令 dp[ S ] 表示选了点集 S ,满足任一前缀和 & ...

  6. BZOJ_5369_[Pkusc2018]最大前缀和_状压DP

    BZOJ_5369_[Pkusc2018]最大前缀和_状压DP Description 小C是一个算法竞赛爱好者,有一天小C遇到了一个非常难的问题:求一个序列的最大子段和. 但是小C并不会做这个题,于 ...

  7. 「PKUSC2018」最大前缀和(状压dp)

    前言 考试被\(hyj\)吊着打... Solution 考虑一下如果前缀和如果在某一个位置的后面的任意一个前缀和都<=0,肯定这就是最大的. 然后这样子就考虑左右两边的状压dp,然后就好了. ...

  8. Loj 6433. 「PKUSC2018」最大前缀和 (状压dp)

    题面 Loj 题解 感觉挺难的啊- 状压\(dp\) 首先,有一个性质 对于一个序列的最大前缀和\(\sum_{i=1}^{p} A[i]\) 显然对于每个\(\sum_{i=p+1}^{x}A[i] ...

  9. 【洛谷5369】[PKUSC2018] 最大前缀和(状压DP)

    点此看题面 大致题意: 对于一个序列,求全排列下最大前缀和之和. 状压\(DP\) 考虑如果单纯按照题目中对于最大前缀和的定义,则一个序列它的最大前缀和是不唯一的. 为了方便统计,我们姑且规定,如果一 ...

  10. T2988 删除数字【状压Dp+前缀和优化】

    Online Judge:从Topcoder搬过来,具体哪一题不清楚 Label:状压Dp+前缀和优化 题目描述 给定两个数A和N,形成一个长度为N+1的序列,(A,A+1,A+2,...,A+N-1 ...

随机推荐

  1. rabbitmq五种消息模型整理

    目录 0. 配置项目 1. 基本消息模型 1.1 生产者发送消息 1.2 消费者获取消息(自动ACK) 1.3 消息确认机制(ACK) 1.4 消费者获取消息(手动ACK) 1.5 自动ACK存在的问 ...

  2. Manacher模版

    现在讲的也是一种处理字符串的方法,叫做Manacher,有点像“马拉车” 1179: [视频][Manacher]最长回文子串 时间限制: 1 Sec  内存限制: 128 MB提交: 209  解决 ...

  3. 14、PCA分析

    做芯片PCA主成分分析可以选择使用affycoretools包的plotPCA方法,以样品"GSM363445_LNTT.CEL"."GSM362948_LTT.CEL& ...

  4. ftp服务器上传下载共享文件

    1 windows下搭建ftp服务器 https://blog.csdn.net/qq_34610293/article/details/79210539 搭建好之后浏览器输入 ftp://ip就可以 ...

  5. softmax函数笔记

  6. Centos7:JDK1.8环境配置

    1.将压缩包解压缩 tar -zxvf jdk-8u181-linux-x64.tar.gz; 2.配置环境变量 环境变量地址:/etc/profile #set java environment J ...

  7. python 目录管理与文件管理

    目录管理(os) system:执行系统命令 # 执行系统命令 os.system('cls') name:获取操作系统名称 # 操作系统名称,nt代表Windows, posix代表类unix pr ...

  8. Exited too quickly (process log may have details)-配置问题

    在配置supervisor的时候,提示Exited too quickly (process log may have details),这个时候一脸懵逼,啥回事,执行太快了???

  9. git ignore 如何忽略已经提交的文件修改

    git ignore git ignore的作用很简单,本地仓库忽略一些文件的修改. ignore的规格可以按文件匹配,按后缀匹配或者按文件夹匹配. 如果在项目开发过程中,需要忽略某一个文件已经提交的 ...

  10. 1.什么是bat文件

    bat文件是dos下的批处理文件.批处理文件是无格式的文本文件,它包含一条或多条命令.它的文件扩展名为 .bat 或 .cmd. 在命令提示下输入批处理文件的名称,或者双击该批处理文件,系统就会调用c ...