传送门

解题思路

  设\(f[i][j][k]\)表示前\(k\)个颜色的棋子占领了\(i\)行\(j\)列的方案数,那么转移时可以枚举上一个颜色时占领的位置,\(f[i][j][k]=\sum\limits_{l=1}^n\sum\limits_{j=1}^mf[l][r][k-1]*C(n-l,i-l)*C(m-r,j-r)\),但发现这样会少一个\(k\)这种颜色占领的方案数,再设\(g[i][j][k]\)表示用相同颜色的\(k\)个棋子占领\(i\)行\(j\)列的方案数,而算\(g\)时可以考虑用总的情况减去不符合的情况,即\(g[i][j][k]=C(i*j,k)-g[l][r][k]*C(i,l)*C(j,r)\)。然后把\(g\)也算到\(f\)里去即可,时间复杂度\(O(n^2m^2c)\)

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#define int long long using namespace std;
const int N=35;
const int MOD=1e9+9;
typedef long long LL; inline int rd(){
int x=0,f=1; char ch=getchar();
while(!isdigit(ch)) f=ch=='-'?0:1,ch=getchar();
while(isdigit(ch)) x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return f?x:-x;
} int n,m,c,cnt[15],C[N*N][N*N];
int f[N][N][15],g[N][N],ans; inline void prework(){
C[0][0]=1;
for(int i=1;i<=n*m;i++){
C[i][0]=1;
for(int j=1;j<=i;j++)
C[i][j]=(C[i-1][j-1]+C[i-1][j])%MOD;
}
} signed main(){
n=rd(),m=rd(),c=rd(); prework();
for(int i=1;i<=c;i++) cnt[i]=rd();
f[0][0][0]=1;
for(int o=1;o<=c;o++){
memset(g,0,sizeof(g));
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)if(i*j>=cnt[o]){
g[i][j]=C[i*j][cnt[o]];
for(int l=1;l<=i;l++)
for(int r=1;r<=j;r++)if(i>l || j>r){
g[i][j]-=(LL)g[l][r]*C[i][l]%MOD*C[j][r]%MOD;
g[i][j]=(g[i][j]%MOD+MOD)%MOD;
}
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
for(int l=0;l<i;l++)
for(int r=0;r<j;r++)if((i-l)*(j-r)>=cnt[o]) {
f[i][j][o]+=(LL)f[l][r][o-1]*g[i-l][j-r]%MOD*C[n-l][i-l]%MOD*C[m-r][j-r]%MOD;
f[i][j][o]%=MOD;
}
}
// for(int i=1;i<=n;i++)
// for(int j=1;j<=m;j++)
// for(int o=1;o<=c;o++)
// printf("f[%d][%d][%d]=%d\n",i,j,o,f[i][j][o]);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
ans=(ans+f[i][j][c])%MOD;
printf("%lld\n",ans);
return 0;
}

BZOJ 3294: [Cqoi2011]放棋子(计数dp)的更多相关文章

  1. BZOJ 3294: [Cqoi2011]放棋子 计数 + 容斥 + 组合

    比较头疼的计数题. 我们发现,放置一个棋子会使得该棋子所在的1个行和1个列都只能放同种棋子. 定义状态 $f_{i,j,k}$ 表示目前已使用了 $i$ 个行,$j$ 个列,并放置了前 $k$ 种棋子 ...

  2. 【BZOJ 3294】 3294: [Cqoi2011]放棋子 (DP+组合数学+容斥原理)

    3294: [Cqoi2011]放棋子 Description Input 输入第一行为两个整数n, m, c,即行数.列数和棋子的颜色数.第二行包含c个正整数,即每个颜色的棋子数.所有颜色的棋子总数 ...

  3. BZOJ 3294: [Cqoi2011]放棋子

    3294: [Cqoi2011]放棋子 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 628  Solved: 238[Submit][Status] ...

  4. [CQOI2011]放棋子 (DP,数论)

    [CQOI2011]放棋子 \(solution:\) 看到这道题我们首先就应该想到有可能是DP和数论,因为题目已经很有特性了(首先题面是放棋子)(然后这一题方案数很多要取模)(而且这一题的数据范围很 ...

  5. P3158 [CQOI2011]放棋子(dp+组合数)

    P3158 [CQOI2011]放棋子 放棋子的顺序和方案数无关,所以可以从按颜色递推 设$f[u][p][k]$为放到第$u$种颜色,所剩空间$p*k$的方案数 $g[u][i][j]$表示第$u$ ...

  6. 洛谷P3158 [CQOI2011]放棋子 组合数学+DP

    题意:在一个m行n列的棋盘里放一些彩色的棋子,使得每个格子最多放一个棋子,且不同颜色的棋子不能在同一行或者同一列.有多少祌方法? 解法:这道题不会做,太菜了qwq.题解是看洛谷大佬的. 设C是组合数, ...

  7. [CQOI2011]放棋子 题解(dp+组合数学)

    Description Input 输入第一行为两个整数n, m, c,即行数.列数和棋子的颜色数. 第二行包含c个正整数,即每个颜色的棋子数. 所有颜色的棋子总数保证不超过nm. N,M<=3 ...

  8. bzoj3294[Cqoi2011]放棋子 dp+组合+容斥

    3294: [Cqoi2011]放棋子 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 755  Solved: 294[Submit][Status] ...

  9. bzoj千题计划261:bzoj3294: [Cqoi2011]放棋子

    http://www.lydsy.com/JudgeOnline/problem.php?id=3294 如果一个颜色的棋子放在了第i行第j列,那这种颜色就会占据第i行第j列,其他颜色不能往这儿放 设 ...

随机推荐

  1. 【转载】阿里入局,独角兽估值30亿美金,谈谈RPA是什么

    缩短法定工作时间,已成国际劳动立法趋势,全球政府都曾面对这样的议题,过往企业IT也在思考这件事,开发出更好的软件系统帮助员工,就是普遍作法,这也已经行之有年,而现阶段最有效的作法,则是要用AI来提供帮 ...

  2. (appium+python)UI自动化_09_unittest批量运行测试用例&生成测试报告

    前言 上篇文章[(appium+python)UI自动化_08_unittest编写测试用例]讲到如何使用unittets编写测试用例,并执行测试文件.接下来讲解下unittest如何批量执行测试文件 ...

  3. 配置NAT实验

    实验拓扑: 下面先配置静态NAT:(将私网地址转为公网地址)内部地址到外部地址的1对1转换 1.先配置出口静态路由,指向公网入口路由器 2.nat static命令配置1对1的IP地址转换 3.测试: ...

  4. parameterType和resultType配置错误

    自己在写mapper.xml的时候 吧parameterType和resultType的两个类搞混了 对调了一下  以至于查询了半天查询不出结果 <select id="findPat ...

  5. ExcelVBA 操作putty

    Private Sub login(ip As String, userName As String, password As String) Dim TaskID As Long '设置进程id p ...

  6. java_第一年_JavaWeb(1)

    注:此系列javaweb的知识是我在一位“孤傲苍狼”的园友学习后记下来的笔记,并非原创^_^ Web开发的基本概念 web应用程序——提供浏览器访问的程序,也成为web应用,包含静态或动态资源:所谓的 ...

  7. How to exploit the x32 recvmmsg() kernel vulnerability CVE 2014-0038

    http://blog.includesecurity.com/2014/03/exploit-CVE-2014-0038-x32-recvmmsg-kernel-vulnerablity.html ...

  8. Django学习记录--~Biubiubiu

    Day One Django常用命令 1.创建Django网站框架 django-admin startproject mysite # mysite为定义的项目文件夹名称 2.超级用户创建 py m ...

  9. YARN的job提交流程

    1.客户端向ResourceManagement 提交 运行的请求 (hadoop jar xxxx.jar) 2.ResourceManager进行检查,没有问题的时候,向客户端返回一个共享资源的路 ...

  10. 2018-2-13-win10-UWP-RSS阅读器

    title author date CreateTime categories win10 UWP RSS阅读器 lindexi 2018-2-13 17:23:3 +0800 2018-2-13 1 ...