BZOJ4386 [POI2015]Wycieczki 矩阵+倍增
题目传送门
https://lydsy.com/JudgeOnline/problem.php?id=4386
题解
一眼就可以看出来是邻接矩阵快速幂。
可是这里的边权不为 \(1\)。不过可以发现,边权最多为 \(3\)。但是边的数量很多,不适合拆边,那就拆点吧。对于一条 \(x \to y\) 的边,就建立一个 \(x_0\to y_{w - 1}\) 的边,\(w\) 为边权。
然后就建立矩阵就可以了。因为我们需要统计第 \(i\) 步之前一共有多少路径,所以可以新建一个节点,每个点向这个点连一条有向边,这个点自己再来一个自环。
然后预处理 \(B_i\) 为走了 \(2^i\) 步的矩阵,直接倍增出来答案就可以了。
下面是代码,矩阵乘法的复杂度为 \(O(n^3)\),一共倍增 \(O(\log k)\) 次,因此总的时间复杂度为 \(O(n^3\log k)\)。
#include<bits/stdc++.h>
#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back
template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b , 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b , 1 : 0;}
typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii;
template<typename I>
inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
}
const int N = 40 * 3 + 7;
int n, m;
ll k;
struct Matrix {
ll a[N][N];
inline Matrix() { memset(a, 0, sizeof(a)); }
inline Matrix operator * (const Matrix &b) {
Matrix c;
for (int k = 0; k <= n; ++k)
for (int i = 0; i <= n; ++i)
for (int j = 0; j <= n; ++j)
c.a[i][j] += a[i][k] * b.a[k][j];
return c;
}
inline void print() const {
for (int i = 0; i <= n; ++i) {
for (int j = 0; j <= n; ++j) dbg("%lld ", a[i][j]);
dbg("\n");
}
}
} A, B[N];
inline bool isfull(const Matrix &a) {
ll cnt = 0;
for (int i = 1; i <= n / 3; ++i) {
cnt += a.a[i][0] - 1;
if (cnt >= k) return 1;
}
return 0;
}
inline void work() {
n = n * 3, B[0] = A;
int lim = 0;
for (int i = 1; i <= 70; ++i) {
B[i] = B[i - 1] * B[i - 1];
++lim;
if (isfull(B[i])) break;
}
if (!isfull(B[lim--])) {
puts("-1");
return;
}
memset(A.a, 0, sizeof(A.a));
for (int i = 0; i <= n; ++i) A.a[i][i] = 1;
ll ans = 0;
for (int i = lim; ~i; --i) {
const Matrix &tmp = A * B[i];
if (!isfull(tmp)) A = tmp, ans += 1ll << i;
}
printf("%lld\n", ans);
}
inline void init() {
read(n), read(m), read(k);
for (int i = 1; i <= m; ++i) {
int x, y, z;
read(x), read(y), read(z);
if (z == 1) ++A.a[x][y];
if (z == 2) ++A.a[x][y + n];
if (z == 3) ++A.a[x][y + n * 2];
}
for (int i = 1; i <= n; ++i) A.a[i][0] = A.a[i + n][i] = A.a[i + n * 2][i + n] = 1;
A.a[0][0] = 1;
}
int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
init();
work();
fclose(stdin), fclose(stdout);
return 0;
}
BZOJ4386 [POI2015]Wycieczki 矩阵+倍增的更多相关文章
- BZOJ4386[POI2015]Wycieczki——矩阵乘法+倍增
题目描述 给定一张n个点m条边的带权有向图,每条边的边权只可能是1,2,3中的一种.将所有可能的路径按路径长度排序,请输出第k小的路径的长度,注意路径不一定是简单路径,即可以重复走同一个点. 输入 第 ...
- 【bzoj4386】[POI2015]Wycieczki 矩阵乘法
题目描述 给定一张n个点m条边的带权有向图,每条边的边权只可能是1,2,3中的一种.将所有可能的路径按路径长度排序,请输出第k小的路径的长度,注意路径不一定是简单路径,即可以重复走同一个点. 输入 第 ...
- BZOJ4386 : [POI2015]Wycieczki
将每个点拆成三个点,并将转移转化为矩阵乘法,然后倍增即可求出第$k$短路的长度,注意对爆long long情况的处理. 时间复杂度$O(n^3\log k)$. #include<cstdio& ...
- BZOJ4386[POI2015]Wycieczki / Luogu3597[POI2015]WYC - 矩乘
Solution 想到边权为$1$的情况直接矩乘就可以得出长度$<=t$ 的路径条数, 然后二分check一下即可 但是拓展到边权为$2$,$3$ 时, 需要新建节点 $i+n$ 和 $i+2n ...
- BZOJ 4386 Luogu P3597 [POI2015]Wycieczki (矩阵乘法)
题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=4386 (luogu) https://www.luogu.org/pro ...
- 【BZOJ-4386】Wycieczki DP + 矩阵乘法
4386: [POI2015]Wycieczki Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 197 Solved: 49[Submit][Sta ...
- bzoj 4386: [POI2015]Wycieczki
bzoj 4386: [POI2015]Wycieczki 这题什么素质,爆long long就算了,连int128都爆……最后还是用long double卡过的……而且可能是我本身自带大常数吧,T了 ...
- UVa 11149 矩阵的幂(矩阵倍增法模板题)
https://vjudge.net/problem/UVA-11149 题意: 输入一个n×n矩阵A,计算A+A^2+A^3+...A^k的值. 思路: 矩阵倍增法. 处理方法如下,一直化简下去直到 ...
- [POI2015]Wycieczki
题目描述 给定一张n个点m条边的带权有向图,每条边的边权只可能是1,2,3中的一种.将所有可能的路径按路径长度排序,请输出第k小的路径的长度,注意路径不一定是简单路径,即可以重复走同一个点. 输入输出 ...
随机推荐
- ### Error updating database. Cause: com.microsoft.sqlserver.jdbc.SQLServerException: 必须声明标量变量 "@P23@P24"。(sql少一个逗号)【??】
(?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,[??],?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?, ...
- IT 技术人需要思考的 15 个问题
行内的人自嘲是程序猿.屌丝和码农,行外的人也经常拿IT人调侃,那么究竟是IT人没有价值,还是没有仔细思考过自身的价值? 1.搞 IT 的是屌丝.码农.程序猿? 人们提到IT人的时候,总会想到他们呆板. ...
- 让Flash内心崩溃的HTML5历史
对于HTML5,在今天这个互联网时代,大部分人应该至少都听说过这个名字,或许很多人对HTML5的了解都起于一句话:FLASH杀手. HTML5其实早已不是什么新鲜的事物了,其最初的雏形早在2004年就 ...
- 第一周训练 | STL和基本数据结构
A - 圆桌问题: HDU - 4841 #include<iostream> #include<vector> #include<stdio.h> #includ ...
- Linux Weblogic部署web项目(war包)
第一步,启动并访问weblogic,进入登录页面 第二步,进入主页面,开始部署项目 第三步,上载项目war包 选择需要上载的本地war包 第四步,开始项目配置 继续下一步 选择红色标记的配置 第五步, ...
- 深入理解Redis的持久化机制和原理
Redis是一种面向“key-value”类型数据的分布式NoSQL数据库系统,具有高性能.持久存储.适应高并发应用场景等优势.它虽然起步较晚,但发展却十分迅速. 近日,Redis的作者在博客中写到, ...
- Python算法每日一题--002--求众数
给定一个大小为 n 的数组,找到其中的众数.众数是指在数组中出现次数大于 ⌊ n/2 ⌋ 的元素. 你可以假设数组是非空的,并且给定的数组总是存在众数. 示例 1: 输入: [3,2,3]输出: 3示 ...
- Postman 测试Xfire webservice
权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/u013177381/article/det ...
- hdu2602Bone Collector ——动态规划(0/1背包问题)
Problem Description Many years ago , in Teddy’s hometown there was a man who was called “Bone Collec ...
- MapReduce(3): Partitioner, Combiner and Shuffling
Partitioner: Partitioning and Combining take place between Map and Reduce phases. It is to club the ...