1。说明

本文对LDA原始论文的作者所提供的C代码中LDA的主要逻辑部分做凝视,原代码可在这里下载到:https://github.com/Blei-Lab/lda-c

这份代码实现论文《Latent Dirichlet Allocation》中介绍的LDA模型。用变分EM算法求解參数。

为了使代码在vs2013中执行。做了一些微小修改,但不影响原代码的逻辑。

vs2013project可在我的资源中下载:

http://download.csdn.net/detail/happyer88/8861773

----------------------------------------------------------------------

2。准备知识

2.1,LDA原理及推导

《Latent Dirichlet Allocation》论文

我的LDA学习笔记1-4系列

2.2,充分统计量

https://en.wikipedia.org/wiki/Sufficient_statistic

----------------------------------------------------------------------

3,代码凝视

3.1 main.c

原代码中main函数在lda-estimate.c中,创建vsproject时把它挪到了main.c中。

<span style="font-size:14px;">#include  <stdio.h>
#include <stdlib.h>
#include <io.h>
#include<time.h>
#include "cokus.h"
#include "lda-alpha.h"
#include"lda-data.h"
#include"lda-estimate.h"
#include"lda-inference.h"
#include"lda.h"
#include"utils.h" char * datasetName = "scene8"; //数据集名字,必须与目录名字同样
int expec = 1; // expec==1,expect , inf
int vocabularySize_global = 512; // 字典大小
int k = 100; //topic的数目
char* params ="../settings.txt"; //预计:预计过程须要的參数
char* params1 ="../inf-settings.txt"; //判断:判断过程须要的參数
char dataset_train[500]; //预计:预计參数的数据文件
char dataset_test[500]; //判断:判断的数据文件
char dir_trainData[500]; //预计:预计的中间数据和终于数据目录路径
char dir_testData[500]; //判断:判断的中间数据和终于数据目录路径
char model_pre[500];
void assignParameter();
int main()
{
corpus* corpus;
clock_t start,finish;
double totaltime;
long double totaltime_EMiteration;
assignParameter();
//myCreateDirectory(); start=clock();
if(expec)
{
INITIAL_ALPHA = 1; //狄利克雷分布的參数alpha
NTOPICS =k; //主题个数
read_settings(params); //读取參数。。 。 最大迭代次数。收敛条件阈值;EM的最大迭代次数、收敛条件阈值;
corpus = read_data(dataset_train); //读取数据。 。。 数据格式:(每一行)在一个文档中出现的word总数目(去掉次数=0的)index_word1:counts index_word2:counts ........... totaltime_EMiteration = run_em("seeded", dir_trainData, corpus); //求解參数。。。EM过程求解參数--输入:中间数据和终于数据存放目录、语料库 printf("inferencing test images!\n");
read_settings(params1);
corpus = read_data(dataset_test);
infer(model_pre, dir_testData, corpus);
//用完開始释放
}
else
{
read_settings(params1);
corpus = read_data(dataset_test);
infer(model_pre, dir_testData, corpus);
}
finish=clock();
totaltime=(double)(finish-start)/CLOCKS_PER_SEC; printf("nTopic = %d, nTerm = %d estimation time: \n", k, vocabularySize_global);
printf(" EM iteration takes %f seconds(this is %f miniutes)\n", totaltime_EMiteration*60, totaltime_EMiteration); printf("Running Time(--estimate trainData and inference trainData and testData--):%f\n",totaltime); printf("\ntrain--- final data are saved to: %s\n", dir_trainData);
printf("test---- final data are saved to: %s\n", dir_testData);
getch();
return(0);
} void assignParameter()
{
sprintf(dataset_train,"../train.txt");
sprintf(dataset_test,"../test.txt"); sprintf(dir_trainData, "../ResultData");
sprintf(dir_testData, "../ResultData");
sprintf(model_pre, "../ResultData/final"); }
</span>

3.2 lda.h

自己定义数据结构

#ifndef LDA_H
#define LDA_H typedef struct
{
int* words; //文档中的单词,这里存的是该单词在文档集字典中的ID
int* counts; //每一个单词文档中出现次数
int length; //文档中出现的单词个数,去重的。也就是反复出现的单词不计
int total; //文档中总单词数,不去重
} document; typedef struct
{
document* docs;
int num_terms; //文档集中出现的单词个数。去重的。也就是文档集字典大小
int num_docs; //文档集中文档个数
} corpus; typedef struct
{
double alpha; //论文中的模型參数alpha,本来应该是k维。程序中实现的是对称分布的Dirichlet,k维的值是同样的
double** log_prob_w; //论文中的模型參数beta。每一行存一个主题的词分布,维<span style="font-family: Arial, Helvetica, sans-serif;">度k*V</span>
int num_topics; //主题个数
int num_terms;
} lda_model; typedef struct
{
double** class_word;//模型參数beta的充分统计量。维度:主题个数*文档集字典大小(K*V)
double* class_total;//存主题分布z的 充分统计量,维度:主题个数K
double alpha_suffstats; //模型參数alpha的充分统计量
int num_docs;
} lda_suffstats; #endif

3.3 lda-model.c

主要是初始化lda模型(有三种方法),一种是全部值都为0,'random'是用随机数,'seeded'是随机挑选一些文档来初始化模型

还有计算模型參数alpha , beta (lda_mle)

#include "lda-model.h"

/*
* compute MLE lda model from sufficient statistics
*
*/ void lda_mle(lda_model* model, lda_suffstats* ss, int estimate_alpha)
{
int k; int w; for (k = 0; k < model->num_topics; k++)
{
for (w = 0; w < model->num_terms; w++)
{
if (ss->class_word[k][w] > 0)
{
//log_prob_w是模型參数beta,主题-词分布
//class_word和class_total都是充分统计量(sufficient statistic)
//所以log相减是在做归一化,beta中的值是概率。要在0-1之间
model->log_prob_w[k][w] =
log(ss->class_word[k][w]) -
log(ss->class_total[k]);
}
else
model->log_prob_w[k][w] = -100;
}
}
if (estimate_alpha == 1)
{
//用牛顿方法优化得到alpha
//注意这里alpha_suffstats的值
model->alpha = opt_alpha(ss->alpha_suffstats,
ss->num_docs,
model->num_topics); printf("new alpha = %5.5f\n", model->alpha);
}
} /*
* allocate sufficient statistics
*
*/ lda_suffstats* new_lda_suffstats(lda_model* model)
{
int num_topics = model->num_topics;
int num_terms = model->num_terms;
int i,j; lda_suffstats* ss = malloc(sizeof(lda_suffstats));
ss->class_total = malloc(sizeof(double)*num_topics);
ss->class_word = malloc(sizeof(double*)*num_topics);
for (i = 0; i < num_topics; i++)
{
ss->class_total[i] = 0;
ss->class_word[i] = malloc(sizeof(double)*num_terms);
for (j = 0; j < num_terms; j++)
{
ss->class_word[i][j] = 0;
}
}
return(ss);
}
void free_lda_ss(lda_suffstats* ss, lda_model* model)
{
int i=0;
for (i=0; i < model->num_topics; i++)
free(ss->class_word[i]);
free(ss->class_word);
free(ss->class_total);
free(ss);
} /*
* various intializations for the sufficient statistics
*
*/ void zero_initialize_ss(lda_suffstats* ss, lda_model* model)
{
int k, w;
for (k = 0; k < model->num_topics; k++)
{
ss->class_total[k] = 0;
for (w = 0; w < model->num_terms; w++)
{
ss->class_word[k][w] = 0;
}
}
ss->num_docs = 0;
ss->alpha_suffstats = 0;
} void random_initialize_ss(lda_suffstats* ss, lda_model* model)
{
int num_topics = model->num_topics;
int num_terms = model->num_terms;
int k, n;
for (k = 0; k < num_topics; k++)
{
for (n = 0; n < num_terms; n++)
{
ss->class_word[k][n] += 1.0/num_terms + myrand();
ss->class_total[k] += ss->class_word[k][n];
}
}
} void corpus_initialize_ss(lda_suffstats* ss, lda_model* model, corpus* c)
{
int num_topics = model->num_topics;
int i, k, d, n;
document* doc; for (k = 0; k < num_topics; k++)//每一个主题用一些文档的来初始化其主题-词 分布 的充分统计量
{
for (i = 0; i < NUM_INIT; i++)//在文档集中随机挑选NUM_INIT=1个文档
{
d = floor(myrand() * c->num_docs); //随机挑选
printf("initialized with document %d\n", d);
doc = &(c->docs[d]);
for (n = 0; n < doc->length; n++)
{
//将NUM_INIT个文档的词频统计,作为第k个主题的词分布的统计量
ss->class_word[k][doc->words[n]] += doc->counts[n];
}
}
for (n = 0; n < model->num_terms; n++)
{
ss->class_word[k][n] += 1.0;//由于后面要对它求log,所以值必须大于0
//是对class_word按行求和的结果,是主题k被选中的次数,也就是该主题下的词出现次数的和
ss->class_total[k] = ss->class_total[k] + ss->class_word[k][n];
}
//这样用文档的词频信息初始化,total必定不为0
//if (ss->class_total[k] == 0)
// ss->class_total[k] = 1;
}
} /*
* allocate new lda model
*
*/ lda_model* new_lda_model(int num_terms, int num_topics)
{
int i,j;
lda_model* model; model = malloc(sizeof(lda_model));
model->num_topics = num_topics;
model->num_terms = num_terms;
model->alpha = 1.0;
model->log_prob_w = malloc(sizeof(double*)*num_topics);
for (i = 0; i < num_topics; i++)
{
model->log_prob_w[i] = malloc(sizeof(double)*num_terms);
for (j = 0; j < num_terms; j++)
model->log_prob_w[i][j] = 0;
}
return(model);
} /*
* deallocate new lda model
*
*/ void free_lda_model(lda_model* model)
{
int i; for (i = 0; i < model->num_topics; i++)
{
free(model->log_prob_w[i]);
}
free(model->log_prob_w);
free(model);
} /*
* save an lda model
*
*/ void save_lda_model(lda_model* model, char* model_root)
{
char filename[100];
FILE* fileptr;
int i, j; sprintf(filename, "%s.beta", model_root);
fileptr = fopen(filename, "w");
for (i = 0; i < model->num_topics; i++)
{
for (j = 0; j < model->num_terms; j++)
{
fprintf(fileptr, " %5.10f", model->log_prob_w[i][j]);
}
fprintf(fileptr, "\n");
}
fclose(fileptr); sprintf(filename, "%s.other", model_root);
fileptr = fopen(filename, "w");
fprintf(fileptr, "num_topics %d\n", model->num_topics);
fprintf(fileptr, "num_terms %d\n", model->num_terms);
fprintf(fileptr, "alpha %5.10f\n", model->alpha);
fclose(fileptr);
} lda_model* load_lda_model(char* model_root)
{
char filename[100];
FILE* fileptr;
int i, j, num_terms, num_topics;
float x, alpha;
lda_model* model; sprintf(filename, "%s.other", model_root);
printf("loading %s\n", filename);
fileptr = fopen(filename, "r");
fscanf(fileptr, "num_topics %d\n", &num_topics);
fscanf(fileptr, "num_terms %d\n", &num_terms);
fscanf(fileptr, "alpha %f\n", &alpha);
fclose(fileptr); model = new_lda_model(num_terms, num_topics);
model->alpha = alpha; sprintf(filename, "%s.beta", model_root);
printf("loading %s\n", filename);
fileptr = fopen(filename, "r");
for (i = 0; i < num_topics; i++)
{
for (j = 0; j < num_terms; j++)
{
fscanf(fileptr, "%f", &x);
model->log_prob_w[i][j] = x;
}
}
fclose(fileptr);
return(model);
}

3.3 lda-estimate.c

当中包括和模型求解相关的函数,em算法(run_em)和e-step(doc_e_step)

#include "lda-estimate.h"

/*
* perform inference on a document and update sufficient statistics
*
*/
int LAG=5;
double doc_e_step(document* doc, double* gamma, double** phi,
lda_model* model, lda_suffstats* ss)
{
double likelihood;
int n, k;
double gamma_sum;
// posterior inference likelihood = lda_inference(doc, model, gamma, phi); // update sufficient statistics //这里更新alpha的 充分统计量
//alpha_suffstats = sum(digamma(gamma)) - K*digamma(gamm_sum)
gamma_sum = 0;
for (k = 0; k < model->num_topics; k++)
{
gamma_sum += gamma[k];
ss->alpha_suffstats += digamma(gamma[k]); //log gamma函数的一阶导数
}
ss->alpha_suffstats -= model->num_topics * digamma(gamma_sum); for (n = 0; n < doc->length; n++)
{
for (k = 0; k < model->num_topics; k++)
{
//phi[n][k]是第n个word由第k个主题生成的概率。在log space
ss->class_word[k][doc->words[n]] += doc->counts[n]*phi[n][k];
ss->class_total[k] += doc->counts[n]*phi[n][k];
}
}
//增加充分统计量的文档数
ss->num_docs = ss->num_docs + 1; return(likelihood);
} /*
* writes the word assignments line for a document to a file
*
*/ int write_word_assignment(FILE* result, FILE* f, document* doc, double** phi, lda_model* model)
{
int n;
//f中保存phi, result中保存结果:[wordID:概率最大的topicID]
fprintf(result, "%03d", doc->length);
for (n = 0; n < doc->length; n++)
{
int k;
for (k=0;k< model->num_topics;k++)
fprintf(f, "%f\t",phi[n][k]); //一行相应一个word由每个topic生成的概率
fprintf(f, "\n"); fprintf(result, " %04d:%02d",
doc->words[n], argmax(phi[n], model->num_topics));//argmax 找出phi[n]中最大的元素相应的索引位置,也就是topicID
}
fprintf(result, "\n"); //一行相应一个文档的 每个word相应的概率最大的topic
fflush(f);
fflush(result);
return 0; } /*
* saves the gamma parameters of the current dataset
*
*/ void save_gamma(char* filename, double** gamma, int num_docs, int num_topics)
{
FILE* fileptr;
int d, k;
fileptr = fopen(filename, "w"); for (d = 0; d < num_docs; d++)
{
fprintf(fileptr, "%5.10f", gamma[d][0]);
for (k = 1; k < num_topics; k++)
{
fprintf(fileptr, " %5.10f", gamma[d][k]);
}
fprintf(fileptr, "\n");
}
fclose(fileptr);
} /*
* run_em
*
*/ long double run_em(char* start, char* directory, corpus* corpus)
{
clock_t start_EM, finish_EM;
double * theta;
FILE * thetaFile; int d, n;
lda_model *model = NULL;
double **var_gamma, **phi;
FILE* likelihood_file;
int max_length;
char filename[500];
char filename1[500];
int i;
double likelihood, likelihood_old, converged;
lda_suffstats* ss;
FILE* w_asgn_file;
FILE* result; // allocate variational parameters
//为变分參数gamma分配空间,维度:文档数*主题数
var_gamma = malloc(sizeof(double*)*(corpus->num_docs));
for (d = 0; d < corpus->num_docs; d++)
var_gamma[d] = malloc(sizeof(double) * NTOPICS);
//为变分參数phi分配空间。维度:文档集中文档的最大单词数(去重) * 主题数
max_length = max_corpus_length(corpus);
phi = malloc(sizeof(double*)*max_length);
for (n = 0; n < max_length; n++)
phi[n] = malloc(sizeof(double) * NTOPICS); // initialize model
ss = NULL;
if (strcmp(start, "seeded")==0)
{
model = new_lda_model(corpus->num_terms, NTOPICS);
ss = new_lda_suffstats(model);
corpus_initialize_ss(ss, model, corpus); //初始化tw分布
lda_mle(model, ss, 0); //compute MLE lda model from sufficient statistics
model->alpha = INITIAL_ALPHA;
}
else if (strcmp(start, "random")==0)
{
model = new_lda_model(corpus->num_terms, NTOPICS);
ss = new_lda_suffstats(model);
random_initialize_ss(ss, model);
lda_mle(model, ss, 0);
model->alpha = INITIAL_ALPHA;
}
else
{
model = load_lda_model(start);
ss = new_lda_suffstats(model);
} sprintf(filename,"%s/000",directory);
save_lda_model(model, filename); // run expectation maximization i = 0;
likelihood_old = 0;
converged = 1;
sprintf(filename, "%s/likelihood.dat", directory);
likelihood_file = fopen(filename, "w"); start_EM = clock();
//em迭代继续运行条件:下面1和2同一时候满足
//1,
//converaged<0 也就是新值比旧值好
//或converaged>EM_CONVERGED 新值和旧值还不够近似
//或迭代步骤运行太少(<=2)
//2,
//当前迭代step数在规定的最大迭代步数以内
//或者没有指定最大迭代步数(-1)
while (((converged < 0) || (converged > EM_CONVERGED) || (i <= 2)) && ((i <= EM_MAX_ITER) || (EM_MAX_ITER == -1)) )
{
i++; printf("**** em iteration %d ****\n", i);
likelihood = 0;
zero_initialize_ss(ss, model); //把统计量的值都赋为0 // e-step
//固定alpha和beta。对每一篇文档找到优化的gamma和phi,更新充分统计量,计算似然
for (d = 0; d < corpus->num_docs; d++)
{
if ((d % 10) == 0) printf("document %d in %d EM iteration\n",d, i);
likelihood += doc_e_step(&(corpus->docs[d]),
var_gamma[d],
phi,
model,
ss);
} // m-step //依据当前的充分统计量。更新模型參数alpha,beta
lda_mle(model, ss, ESTIMATE_ALPHA); // check for convergence converged = (likelihood_old - likelihood) / (likelihood_old);
if (converged < 0) VAR_MAX_ITER = VAR_MAX_ITER * 2;
likelihood_old = likelihood; // output model and likelihood fprintf(likelihood_file, "%10.10f\t%5.5e\n", likelihood, converged);
fflush(likelihood_file);
if ((i % LAG) == 0)
{
sprintf(filename,"%s/%03d",directory, i);
save_lda_model(model, filename);
sprintf(filename,"%s/%03d.gamma",directory, i);
save_gamma(filename, var_gamma, corpus->num_docs, model->num_topics);
}
}
//EM迭代结束
finish_EM = clock();
printf("nTopic = %d, nTerm = %d estimation time: \n", model->num_topics, model->num_terms);
printf(" EM iteration takes %f seconds(this is %d miniutes)\n", (double)(finish_EM-start_EM)/CLOCKS_PER_SEC, (finish_EM-start_EM)/CLOCKS_PER_SEC/60); // output the final model
sprintf(filename,"%s/final",directory);
save_lda_model(model, filename); //此函数中保存了beta到final.beta文件 , 还有.other文件
sprintf(filename,"%s/final.gamma",directory);
save_gamma(filename, var_gamma, corpus->num_docs, model->num_topics); // output theta
theta = (double*)malloc(sizeof(double)*model->num_topics);
sprintf(filename1, "%s/final.theta", directory);
thetaFile = fopen(filename1, "w");
// output the word assignments (for visualization)
sprintf(filename1, "%s/result-doc-assgn.dat", directory);
result = fopen(filename1, "w");
for (d = 0; d < corpus->num_docs; d++)
{
sprintf(filename, "%s/result_%d_phi.dat", directory,d); //调试这一部分有越界的错误,完成,filename数组空间太小。
w_asgn_file = fopen(filename, "w");
printf("final e step document %d\n",d);
likelihood += lda_inference(&(corpus->docs[d]), model, var_gamma[d], phi);
write_word_assignment(result, w_asgn_file, &(corpus->docs[d]), phi, model);
computeTheta( thetaFile, &(corpus->docs[d]), phi, model, theta);
fclose(w_asgn_file);
}
fclose(result);
fclose(thetaFile);
fclose(likelihood_file);
//释放空间
free(theta);
for (d = 0; d < corpus->num_docs; d++)
free(var_gamma[d]);
free(var_gamma);
for (n = 0; n < max_length; n++)
free(phi[n]);
free(phi);
free_lda_ss( ss, model);
free_lda_model(model); return (long double)(finish_EM-start_EM)/CLOCKS_PER_SEC/60;
} void computeTheta( FILE* thetaFile, document* doc, double** phi, lda_model* model, double * theta)
{
int n; for (n=0; n< model->num_topics; n++)
theta[n] = 0;
for (n = 0; n<doc->length; n++)
{
int topicIndex = argmax(phi[n], model->num_topics);
theta[ topicIndex ] = theta[ topicIndex ] + doc->counts[ n ];
} for (n=0; n<model->num_topics; n++)
{
theta[n] = theta[n]/doc->total;
fprintf(thetaFile, "%f\t", theta[n]);
}
fprintf(thetaFile, "\n");
fflush(thetaFile); } /*
* read settings.
*
*/ void read_settings(char* filename)
{
FILE* fileptr;
char alpha_action[100];
fileptr = fopen(filename, "r");
fscanf(fileptr, "var max iter %d\n", &VAR_MAX_ITER);
fscanf(fileptr, "var convergence %f\n", &VAR_CONVERGED);
fscanf(fileptr, "em max iter %d\n", &EM_MAX_ITER);
fscanf(fileptr, "em convergence %f\n", &EM_CONVERGED);
fscanf(fileptr, "alpha %s", alpha_action);
if (strcmp(alpha_action, "fixed")==0)
{
ESTIMATE_ALPHA = 0;
}
else
{
ESTIMATE_ALPHA = 1;
}
fclose(fileptr);
} /*
* inference only
*
*/ void infer(char* model_root, char* save, corpus* corpus)
{
FILE* fileptr;
FILE* result;
FILE* w_asgn_file;
char filename[100];
char filename1[200];
int i, d, n;
lda_model *model;
double **var_gamma, likelihood, **phi;
document* doc; /*double ***corpusPhi;
corpusPhi = (double***)malloc(sizeof(double**)*(corpus->num_docs));
for (i=0;i<corpus.num_docs;j++)
{
corpusPhi[i] = (double**)malloc(sizeof(double*)*)
}*/
sprintf(filename1, "%s/result-doc-assgn.dat", save);
result = fopen(filename1, "w"); model = load_lda_model(model_root);
var_gamma = (double**)malloc(sizeof(double*)*(corpus->num_docs));
for (i = 0; i < corpus->num_docs; i++)
var_gamma[i] = (double*)malloc(sizeof(double)*model->num_topics); //int max_length = max_corpus_length(corpus); sprintf(filename, "%s-lda-lhood.dat", save);
fileptr = fopen(filename, "w"); for (d = 0; d < corpus->num_docs; d++)
{
if (((d % 100) == 0) && (d>0)) printf("document %d\n",d); doc = &(corpus->docs[d]);
phi = (double**) malloc(sizeof(double*) * doc->length);
//phi = (double**) malloc(sizeof(double*) * max_length);
for (n = 0; n < doc->length; n++)
//for (n = 0; n < max_length; n++)
phi[n] = (double*) malloc(sizeof(double) * model->num_topics);
likelihood = lda_inference(doc, model, var_gamma[d], phi); fprintf(fileptr, "%5.5f\n", likelihood); //输出每个文档的phi到文件result_%d_phi.dat中 另外每个word相应的概率最大的topic保存在文件result-doc-assgn.dat中 一行相应一个文档
sprintf(filename, "%s/result_%d_phi.dat", save,d);
w_asgn_file = fopen(filename, "w");
printf("final e step document %d\n",d);
write_word_assignment(result,w_asgn_file, &(corpus->docs[d]), phi, model);
fclose(w_asgn_file);
for (n = 0; n < doc->length; n++)
free(phi[n]);
free(phi);
}
fclose(fileptr);
sprintf(filename, "%s-gamma.dat", save);
save_gamma(filename, var_gamma, corpus->num_docs, model->num_topics); fclose(result);
for (d = 0; d < corpus->num_docs; d++)
free(var_gamma[d]);
free(var_gamma); free_lda_model(model);
}

3.4 lda-inference.c

当中包括变分參数求解相关的函数

#include "lda-inference.h"

/*
* variational inference
*
*/
int lisnan(double x) {
return x != x;
}
double lda_inference(document* doc, lda_model* model, double* var_gamma, double** phi)
{
double converged = 1;
double phisum = 0, likelihood = 0;
double likelihood_old = 0, *oldphi=(double *)malloc(sizeof(double)*(model->num_topics)); int k, n, var_iter;
double *digamma_gam=(double *)malloc(sizeof(double)*(model->num_topics)); // compute posterior dirichlet for (k = 0; k < model->num_topics; k++)
{
//初始化变分參数gamma=alpha + 当前文档中单词个数(不去重) N / 主题个数 k
var_gamma[k] = model->alpha + (doc->total/((double) model->num_topics));
//log gamma函数的一阶导数
digamma_gam[k] = digamma(var_gamma[k]);
//初始化变分參数phi=1/k
for (n = 0; n < doc->length; n++)
phi[n][k] = 1.0/model->num_topics;
}
var_iter = 0;
//開始迭代
while ((converged > VAR_CONVERGED) &&
((var_iter < VAR_MAX_ITER) || (VAR_MAX_ITER == -1)))
{
var_iter++;
for (n = 0; n < doc->length; n++)
{
phisum = 0;
for (k = 0; k < model->num_topics; k++)
{
oldphi[k] = phi[n][k];
//更新变分參数 phi
//就是论文中变分判断算法的式子 phi(n,i) = b(i,wn) * exp(digamma(gamma(i)))
//这里由于有exp所以在log空间计算,算得的phi也是log space的
phi[n][k] =
digamma_gam[k] +
model->log_prob_w[k][doc->words[n]]; if (k > 0)
phisum = log_sum(phisum, phi[n][k]);//在log space对phi求和
else
phisum = phi[n][k]; // note, phi is in log space
} for (k = 0; k < model->num_topics; k++)
{
//归一化,使phi(n)和为1
phi[n][k] = exp(phi[n][k] - phisum);
//更新变分參数 gamma
var_gamma[k] =
var_gamma[k] + doc->counts[n]*(phi[n][k] - oldphi[k]);
// !!! a lot of extra digamma's here because of how we're computing it
// !!! but its more automatically updated too.
digamma_gam[k] = digamma(var_gamma[k]);
}
} likelihood = compute_likelihood(doc, model, phi, var_gamma);
assert(!isnan(likelihood));
converged = (likelihood_old - likelihood) / likelihood_old;
likelihood_old = likelihood; // printf("[LDA INF] %8.5f %1.3e\n", likelihood, converged);
}//迭代结束
return(likelihood);
} /*
* compute likelihood bound
*
*/
//依照论文附录(15)式计算L(gamma,phi;alpha,beta)
double
compute_likelihood(document* doc, lda_model* model, double** phi, double* var_gamma)
{
double likelihood = 0, digsum = 0, var_gamma_sum = 0, *dig=(double *)malloc(sizeof(double)*(model->num_topics));
int k, n; for (k = 0; k < model->num_topics; k++)
{
dig[k] = digamma(var_gamma[k]);
var_gamma_sum += var_gamma[k];
}
digsum = digamma(var_gamma_sum);
//论文(14)式中的Eq,第1个和第4个是合在一起再拆分算的,第2,3,5个是合在一起算的
//Eq[logp(theta|alpha)]中的前两个部分 和 Eq[logq(theta)]中第一部分
likelihood =
log_gamma(model->alpha * model -> num_topics)
- model -> num_topics * log_gamma(model->alpha)
- (log_gamma(var_gamma_sum)); for (k = 0; k < model->num_topics; k++)
{
//Eq[logp(theta|alpha)]中的第三个部分 和 Eq[logq(theta)]中剩余的
likelihood +=
(model->alpha - 1)*(dig[k] - digsum) + log_gamma(var_gamma[k])
- (var_gamma[k] - 1)*(dig[k] - digsum);
//Eq[logp(z|theta)] + Eq[logp(w|z,beta)] - Eq[logq(z)]
for (n = 0; n < doc->length; n++)
{
if (phi[n][k] > 0)
{
likelihood += doc->counts[n]*
(phi[n][k]*((dig[k] - digsum) - log(phi[n][k])
+ model->log_prob_w[k][doc->words[n]]));
}
}
}
return(likelihood);
}

3.5 lda-data.c

数据集读入

#include "lda-data.h"

corpus* read_data(char* data_filename)
{
FILE *fileptr;
int length, count, word, n, nd, nw;
corpus* c; printf("reading data from %s\n", data_filename);
c = malloc(sizeof(corpus));
c->docs = 0;
c->num_terms = 0;
c->num_docs = 0;
fileptr = fopen(data_filename, "r");
nd = 0; nw = 0;
while ((fscanf_s(fileptr, "%10d", &length) != EOF)) //读入每行数据的第一个数字,是文档的字典大小(文档中单词去重的个数)
{
//对于第nd个文档
c->docs = (document*) realloc(c->docs, sizeof(document)*(nd+1)); //(数据类型*)realloc(要改变内存大小的指针名,新的大小) 新的大小一定要大于原来的大小。不然的话会导致数据丢失! c->docs[nd].length = length; //文档中出现过的单词的个数。也就是文档字典大小,是去重的
c->docs[nd].total = 0; //文档中总单词个数。不去重,是对counts的求和。
c->docs[nd].words = malloc(sizeof(int)*length); //文档中的word在文档集字典中的ID
c->docs[nd].counts = malloc(sizeof(int)*length); //文档中word出现次数
for (n = 0; n < length; n++)//读入每行数据剩下的数据。词频统计
{
fscanf_s(fileptr, "%10d:%10d", &word, &count); //读入每一个 [wordID:word出现次数]
word = word - OFFSET;
c->docs[nd].words[n] = word;
c->docs[nd].counts[n] = count;
c->docs[nd].total += count;
if (word >= nw) { nw = word + 1; } //nw记录文档集最大的那个word ID。也就是文档集字典中的单词个数
//if (word >= nw) { nw = word; } }
nd++;
}
fclose(fileptr);
c->num_docs = nd;
c->num_terms = nw;
printf("number of docs : %d\n", nd);
printf("number of terms : %d\n", nw);
return(c);
} int max_corpus_length(corpus* c)//输出数据集中单词数(去重后)最多的文档的单词数。这个length是去重后的长度
{
int n, max = 0;
for (n = 0; n < c->num_docs; n++)
if (c->docs[n].length > max) max = c->docs[n].length;
return(max);
}

3.6 lda-alpha.c

牛顿法计算模型參数alpha

#include "lda-alpha.h"
#include "lda-inference.h"
/*
* objective function and its derivatives
*
*/ double alhood(double a, double ss, int D, int K)
{ return(D * (log_gamma(K * a) - K * log_gamma(a)) + (a - 1) * ss); } double d_alhood(double a, double ss, int D, int K)
{ return(D * (K * digamma(K * a) - K * digamma(a)) + ss); } double d2_alhood(double a, int D, int K)
{ return(D * (K * K * trigamma(K * a) - K * trigamma(a))); } /*
* newtons method
*
*/ double opt_alpha(double ss, int D, int K)
{
double a, log_a, init_a = 100;
double f, df, d2f;
int iter = 0; log_a = log(init_a);
do
{
iter++;
a = exp(log_a);
if (isnan(a))
{
init_a = init_a * 10;
printf("warning : alpha is nan; new init = %5.5f\n", init_a);
a = init_a;
log_a = log(a);
}
f = alhood(a, ss, D, K); //附录A4.2中的L(a)
df = d_alhood(a, ss, D, K); //L对a的一阶偏导
d2f = d2_alhood(a, D, K); //二阶偏导
log_a = log_a - df/(d2f * a + df);//迭代公式
printf("alpha maximization : %5.5f %5.5f\n", f, df);
}
while ((fabs(df) > NEWTON_THRESH) && (iter < MAX_ALPHA_ITER));
return(exp(log_a));
}

还有cokus.c 和 utils.c 中是一些数学计算的函数。

LDA主题模型学习笔记5:C源代码理解的更多相关文章

  1. LDA主题模型学习笔记3.5:变分參数推导

    如今来推导一下得到变分參数更新式的过程.这一部分是在论文的附录中,为避免陷入过多细节而影响总体理解.能够在刚開始学习LDA的时候先不关注求解细节.首先要把L写成关于γ,ϕ\gamma,\phi函数.依 ...

  2. NLP传统基础(2)---LDA主题模型---学习文档主题的概率分布(文本分类/聚类)

    一.简介 https://cloud.tencent.com/developer/article/1058777 1.LDA是一种主题模型 作用:可以将每篇文档的主题以概率分布的形式给出[给定一篇文档 ...

  3. 用scikit-learn学习LDA主题模型

    在LDA模型原理篇我们总结了LDA主题模型的原理,这里我们就从应用的角度来使用scikit-learn来学习LDA主题模型.除了scikit-learn,  还有spark MLlib和gensim库 ...

  4. 机器学习-LDA主题模型笔记

    LDA常见的应用方向: 信息提取和搜索(语义分析):文档分类/聚类.文章摘要.社区挖掘:基于内容的图像聚类.目标识别(以及其他计算机视觉应用):生物信息数据的应用; 对于朴素贝叶斯模型来说,可以胜任许 ...

  5. 概率图模型学习笔记:HMM、MEMM、CRF

    作者:Scofield链接:https://www.zhihu.com/question/35866596/answer/236886066来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商 ...

  6. 理解 LDA 主题模型

    前言 gamma函数 0 整体把握LDA 1 gamma函数 beta分布 1 beta分布 2 Beta-Binomial 共轭 3 共轭先验分布 4 从beta分布推广到Dirichlet 分布 ...

  7. 通俗理解LDA主题模型

    通俗理解LDA主题模型 0 前言 印象中,最開始听说"LDA"这个名词,是缘于rickjin在2013年3月写的一个LDA科普系列,叫LDA数学八卦,我当时一直想看来着,记得还打印 ...

  8. R语言︱LDA主题模型——最优主题数选取(topicmodels)+LDAvis可视化(lda+LDAvis)

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:在自己学LDA主题模型时候,发现该模 ...

  9. Spark:聚类算法之LDA主题模型算法

    http://blog.csdn.net/pipisorry/article/details/52912179 Spark上实现LDA原理 LDA主题模型算法 [主题模型TopicModel:隐含狄利 ...

随机推荐

  1. addEventListener和attachEvent二者绑定的执行函数中的this不相同【转载】

    yuanwen http://www.jb51.net/article/32511.htm 写 addEventListener 和 attachEvent 区别的博文不少,不过大部分都把重点放置于前 ...

  2. 初识React-Redux之粗暴理解入门

    权当暂记 日后再行补充完善,若有阅读者,请翻到下文黄色标题'从这里开始'起阅读. Rudex在我看来最本质做的事情就是将所有的State属性统一存储(一个属性就是一个注册到store的Reducer) ...

  3. Vue.js优雅的实现列表清单

        一.Vue.js简要说明 Vue.js (读音 /vjuː/) 是一套构建用户界面的渐进式框架.与前端框架Angular一样, Vue.js在设计上采用MVVM模式,当View视图层发生变化时 ...

  4. RabbitMQ的简单应用

    虽然后台使用了读写分离技术,能够在一定程度上抗击高并发,但是如果并发量特别巨大时,主数据库不能同时处理高并发的请求,这时数据库容易宕机. 问题: 现在的问题是如何既能保证数据库正常运行,又能实现用户数 ...

  5. 前端必须收藏的CSS3动效库!!!

    现在的网站和App的设计中越来越重视用户体验,而优秀的动效则能使你的应用更具交互性,从而吸引更多用户的使用. 如果你对CSS3中定义动效还不熟练,或希望采用更加简单直接的方式在你的应用中引入动效的话, ...

  6. 《Linux命令行与shell脚本编程大全》第十章 使用编辑器

    主要介绍vim, nano, emacs,KWrite,Kate,GNOME 10.1 vim Unix系统最初的编辑器 10.1.1检查vim软件包 先搞明白你所用的Linux系统是哪种vim软件包 ...

  7. 在使用hibernate的getHibernateTemplate()时怎么让控制台输出封装好的SQL? 怎么用日志打印出来?

    我们在使用 Hibernate 时一般只会关注是否显示生成的 SQL 语句,不过有些时候还不够.默认时 Hibernate 执行的 SQL 语句是打印在控制台上的,它也可以配置为输出给 Log4J 或 ...

  8. Java爬虫框架WebMagic——入门(爬取列表类网站文章)

    初学爬虫,WebMagic作为一个Java开发的爬虫框架很容易上手,下面就通过一个简单的小例子来看一下. WebMagic框架简介 WebMagic框架包含四个组件,PageProcessor.Sch ...

  9. c# AutoMapper 使用方式

    安装方式:使用vs自带的nuget管理工具,搜索AutoMapper ,选择第一个安装到你的项目即可. 我从网上找了一些资料,下载了个demo,然后自己又写了一遍,我把AutoMapper 的使用分为 ...

  10. poj2485 highwaysC语言编写

    /*HighwaysTime Limit: 1000MSMemory Limit: 65536KTotal Submissions: 33595Accepted: 15194DescriptionTh ...