传统解法

提到斐波那契数列(Fibonacci Sequence),首先想到的是经典的动规(DP)算法。

时间复杂度O(n),这里空间复杂度可以优化到O(1)。代码如下:

int fib_n(int n)
{
int dp[] = {, };
if (n <= ) return dp[n]; for (int i = ; i <= n; ++i)
dp[i % ] = dp[(i - ) % ] + dp[(i - ) % ]; return dp[n % ];
}

但是初次接触O(logn)解法有如醍醐灌顶,叹为观止……

O(logn)解法

思路来源 1

考虑一个求幂运算。比如求an,一般来说需要n次累乘,时间复杂度显然是O(n)。实际上可以通过递归达到一种更优化的效果:

an = (an/2)2 * an%2

这里的n/2是取整,如5/2=2。这样就可以实现相当于二分的效果,时间复杂度为O(logn)。

思路来源2

对于Fib数列an(n ≥ 0),可以通过矩阵乘法的方式进行递推:

进而可以得到:

这样就(很机智地)把Fib数列问题转化成了一个求矩阵幂的运算。

解题方法

结合以上思路,首先将其转化为矩阵求幂问题,然后进行二分,O(logn)解法由此诞生。再次感慨人类清奇的脑洞 _(:з」∠)_

以下是代码:

int** mult(int** m1, int** m2)
{
int** res = new int*[];
for (int i = ; i < ; ++i) res[i] = new int[]; res[][] = m1[][] * m2[][] + m1[][] * m2[][];
res[][] = m1[][] * m2[][] + m1[][] * m2[][];
res[][] = m1[][] * m2[][] + m1[][] * m2[][];
res[][] = m1[][] * m2[][] + m1[][] * m2[][]; return res;
} int** recur(int x)
{
if (x == ) {
int** res = new int*[];
for (int i = ; i < ; ++i) res[i] = new int[];
res[][] = res[][] = ;
res[][] = res[][] = ;
return res;
}
if (x == ) {
int** res = new int*[];
for (int i = ; i < ; ++i) res[i] = new int[];
res[][] = res[][] = res[][] = ;
res[][] = ;
return res;
}
int** half = recur(x / );
return mult(mult(half, half), recur(x % ));
} // time: O(logn)
int fib_logn(int n)
{
if (n == || n == ) return ;
int** mat = recur(n - );
return mat[][] + mat[][];
}

结果比较

简单比较一下后者的优化效果,为了是效果更明显,这里将参数设置成一个较大的数(如109),以下是代码以及结果:

void test()
{
const int num = 1e9;
clock_t t1, t2; t1 = clock();
fib_n(num);
t2 = clock();
printf("O(n): %.4f s\n", (double)(t2 - t1) / CLOCKS_PER_SEC); t1 = clock();
fib_logn(num);
t2 = clock();
printf("O(logn): %.4f s\n", (double)(t2 - t1) / CLOCKS_PER_SEC); }

 结果

O(n)算法的速度达到了男子百米的世界顶级水平,而O(logn)只表现出一脸不屑……

好吧,我服……那我把logn的多跑几次 for (int i = ; i < ; ++i) fib_logn(num);

那么结果也很明显了,O(logn)算法表现惊艳!

THE END

Fibonacci 数列O(logn)解法的更多相关文章

  1. 程序员面试题精选100题(16)-O(logn)求Fibonacci数列[算法]

    作者:何海涛 出处:http://zhedahht.blog.163.com/ 题目:定义Fibonacci数列如下: /  0                      n=0 f(n)=      ...

  2. Fibonacci数列的解法

    Fibonacci数列的解法: 1.递归算法 递归的概念,我说不清楚,语文不好.但是核心思想,我认为就是入栈出栈.比方说,你想要求得某个结果,如果一步求解不出来,那么先把最后一步的计算步骤进栈,先不考 ...

  3. 《面试题精选》15.O(logn)求Fibonacci数列

    题目:定义Fibonacci数列例如以下: /    0                      n=0 f(n)=      1                      n=1          ...

  4. 【编程题目】题目:定义 Fibonacci 数列 输入 n,用最快的方法求该数列的第 n 项。

    第 19 题(数组.递归):题目:定义 Fibonacci 数列如下:/ 0 n=0f(n)= 1 n=1/ f(n-1)+f(n-2) n=2输入 n,用最快的方法求该数列的第 n 项. 思路:递归 ...

  5. fibonacci 数列及其应用

    fibonacci 数列及其延展 fibonacci计算 fibonacci数列是指 0,1,1,2,3,5,8,13,21……这样自然数序列,即从第3项开始满足f(n)=f(n-1)+f(n-2): ...

  6. 青蛙跳台阶(Fibonacci数列)

    问题 一只青蛙一次可以跳上 1 级台阶,也可以跳上2 级.求该青蛙跳上一个n 级的台阶总共有多少种跳法. 思路 当n=1时,只有一种跳法,及f(1)=1,当n=2时,有两种跳法,及f(2)=2,当n= ...

  7. 【费式数列(Fibonacci数列)】

    /* 说明: Fibonacci为1200年代的欧洲数学家,在他的着作中曾经提到:若有一只兔子每个月生一只小兔子,一个月后也开 始生产.起初只有一只兔子,一个月后就有两只兔子,二个月后就有三只兔子,三 ...

  8. 常系数线性递推的第n项及前n项和 (Fibonacci数列,矩阵)

      (一)Fibonacci数列f[n]=f[n-1]+f[n-2],f[1]=f[2]=1的第n项的快速求法(不考虑高精度). 解法: 考虑1×2的矩阵[f[n-2],f[n-1]].根据fibon ...

  9. Fibonacci 数列算法分析

    /************************************************* * Fibonacci 数列算法分析 ****************************** ...

随机推荐

  1. ThinkPhp知识大全(非常详细)

    php框架 一.真实项目开发步骤: 多人同时开发项目,协作开发项目.分工合理.效率有提高(代码风格不一样.分工不好) 测试阶段 上线运行 对项目进行维护.修改.升级(单个人维护项目,十分困难,代码风格 ...

  2. 4001: [TJOI2015]概率论

    4001: [TJOI2015]概率论 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 262  Solved: 108[Submit][Status] ...

  3. JavaScript 基础阶段测试题

    JavaScript 基础阶段测试题,试试你能得多少分? 一.选择题1.分析下段代码输出结果是( )    var arr = [2,3,4,5,6];    var sum =0;    for(v ...

  4. Java Reference 源码分析

    @(Java)[Reference] Java Reference 源码分析 Reference对象封装了其它对象的引用,可以和普通的对象一样操作,在一定的限制条件下,支持和垃圾收集器的交互.即可以使 ...

  5. 《连载 | 物联网框架ServerSuperIO教程》- 16.OPC Server的使用步骤。附:3.3 发布与版本更新说明。

    1.C#跨平台物联网通讯框架ServerSuperIO(SSIO)介绍 <连载 | 物联网框架ServerSuperIO教程>1.4种通讯模式机制. <连载 | 物联网框架Serve ...

  6. Spark结构式流编程指南

    Spark结构式流编程指南 概览 Structured Streaming 是一个可拓展,容错的,基于Spark SQL执行引擎的流处理引擎.使用小量的静态数据模拟流处理.伴随流数据的到来,Spark ...

  7. 嵌入式ARM开发环境搭建

    1. 安装,配置,启动FTP服务 安装FTP: sudo apt-get install vsftpd 修改vsftpd的配置文件/etc/vsftpd.conf,将下面两行的'#'去掉#local_ ...

  8. 一个想法照进现实-《IT连》创业项目:关于团队组建

    前言: 从上一篇<三天的风投对接活动内幕分享>归来后,从中领悟了不少内涵. 之后暂停了找钱的想法,这些天也拒绝了不少想要参与众筹的同学. 目前主要精力放在以下三件事: 1:重新规划顶层设计 ...

  9. 【转】并行类加载——让tomcat玩转双十一 @双十一实战

    原文:https://yq.aliyun.com/articles/4227?spm=5176.100239.yqblog1.20.cfRztB 摘要: 今年双十一,是应用容器的最新版本Ali-tom ...

  10. js正则表达式详解及示例讲解

    所谓正则表达式,简单来说就是一种规则,一种计算机能读懂的规则.js中的正则表达式语法是Perl5(一种很早的编程语言)的正则语法的子集.本文将在基础知识的基础上添加示例帮助快速理解正则表达式. 学习正 ...