1. 如果处理的数据是二维的或者三维的,应该怎么办呢?

针对的,我们可以按照二维或者三维的方式,组织线程。老规矩,先代码、后解释

// Kernel definition
__global__ void MatAdd(float A[N][N], float B[N][N],
float C[N][N])
{
int i = threadIdx.x;
int j = threadIdx.y;
C[i][j] = A[i][j] + B[i][j];
}
int main()
{
...
// Kernel invocation with one block of N * N * 1 threads
int numBlocks = ;
dim3 threadsPerBlock(N, N);
MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
...
}

线程可以一维、二维或者三维的方式,组织成Block,在上述代码中,我们指定有一个Block,这个Block按照NxN的二维结构进行组织。如果N就是矩阵相应的维度,那么上述代码块完成的功能就是矩阵对应元素相加。

2.受GPU资源的限制,每一个Block所含线程个数有限(一般情况下,最多为1024个),如果矩阵的维度超过了线程个数上限,是不是就计算不了大型矩阵的对应元素相加了呢?

答案是否定的。如果将Block看做一个基本组成单元,Block又可以按照一维、二维或者三维的形式组织成grid。Blcok、grid、thread的关系如下图所示

如果矩阵的维度超过了Block能够包含线程的上限,我们可采取以下方式应对(先代码,后解释)

// Kernel definition
__global__ void MatAdd(float A[N][N], float B[N][N],
float C[N][N])
{
int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
if (i < N && j < N)
C[i][j] = A[i][j] + B[i][j];
}
int main()
{
...
// Kernel invocation
dim3 threadsPerBlock(, );
dim3 numBlocks(N / threadsPerBlock.x, N / threadsPerBlock.y);
MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
...
}

在上述代码中,N代表矩阵的维度,每一个Block按照16x16的二维结构组织,这样每一个Block只能够处理大型矩阵一个很小的patch。一般情况下,grid所有的thread是自然是顺序排列的(此时的Block索引可以理解为一种二级索引,一级索引指的是直接索引thread)。上述代码就是先将大型矩阵分解为Block,然后由Block里的线程完成具体的矩阵对应元素相加操作。

“The number of thread blocks in a grid is usually dictated by the size of the data being processed or the number of processors in the system, which it can greatly exceed.”

3. Block是并行执行的,假如所需Block数量超出GPU所能提供的Block的限制,会出现什么情况呢?

如上图所示,grid内的Block根据GPU的具体情况,选择顺序执行或者并行执行。

总结:线程的组织方式既能够匹配GPU硬件又能够处理大量数据,是一种很巧妙的安排。

GPU编程-Thread Hierarchy(3)的更多相关文章

  1. GPU 编程入门到精通(五)之 GPU 程序优化进阶

    博主因为工作其中的须要,開始学习 GPU 上面的编程,主要涉及到的是基于 GPU 的深度学习方面的知识.鉴于之前没有接触过 GPU 编程.因此在这里特地学习一下 GPU 上面的编程. 有志同道合的小伙 ...

  2. GPU 编程入门到精通(四)之 GPU 程序优化

    博主因为工作其中的须要,開始学习 GPU 上面的编程,主要涉及到的是基于 GPU 的深度学习方面的知识,鉴于之前没有接触过 GPU 编程.因此在这里特地学习一下 GPU 上面的编程.有志同道合的小伙伴 ...

  3. GPU编程自学5 —— 线程协作

    深度学习的兴起,使得多线程以及GPU编程逐渐成为算法工程师无法规避的问题.这里主要记录自己的GPU自学历程. 目录 <GPU编程自学1 -- 引言> <GPU编程自学2 -- CUD ...

  4. GPU编程自学4 —— CUDA核函数运行参数

    深度学习的兴起,使得多线程以及GPU编程逐渐成为算法工程师无法规避的问题.这里主要记录自己的GPU自学历程. 目录 <GPU编程自学1 -- 引言> <GPU编程自学2 -- CUD ...

  5. GPU 编程入门到精通(三)之 第一个 GPU 程序

    博主因为工作其中的须要.開始学习 GPU 上面的编程,主要涉及到的是基于 GPU 的深度学习方面的知识,鉴于之前没有接触过 GPU 编程,因此在这里特地学习一下 GPU 上面的编程.有志同道合的小伙伴 ...

  6. GPU 编程相关 简要摘录

    GPU 编程可以称为异构编程,最近由于机器学习的火热,很多模型越来越依赖于GPU来进行加速运算,所以异构计算的位置越来越重要:异构编程,主要是指CPU+GPU或者CPU+其他设备(FPGA等)协同计算 ...

  7. 第一篇:GPU 编程技术的发展历程及现状

    前言 本文通过介绍 GPU 编程技术的发展历程,让大家初步地了解 GPU 编程,走进 GPU 编程的世界. 冯诺依曼计算机架构的瓶颈 曾经,几乎所有的处理器都是以冯诺依曼计算机架构为基础的.该系统架构 ...

  8. GPU编程--宏观理解篇(1)

    GPU编程与CPU编程最大的不同可以概括为以下两点: "The same program is executed on many data elements in parallel" ...

  9. Point : GPU编程的艺术!一切的历史!

    Point: 渲染渲染,神奇的渲染!! ———————————————— 只要你走的足够远,你肯定能到达某个地方. 1"GPU编程" History ————————— //由于笔 ...

随机推荐

  1. 读书笔记 effective c++ Item 50 了解何时替换new和delete 是有意义的

    1. 自定义new和delete的三个常见原因 我们先回顾一下基本原理.为什么人们一开始就想去替换编译器提供的operator new和operator delete版本?有三个最常见的原因: 为了检 ...

  2. python scrapy 抓取脚本之家文章(scrapy 入门使用简介)

    老早之前就听说过python的scrapy.这是一个分布式爬虫的框架,可以让你轻松写出高性能的分布式异步爬虫.使用框架的最大好处当然就是不同重复造轮子了,因为有很多东西框架当中都有了,直接拿过来使用就 ...

  3. StringBuilder的实现

    先看看MS给出的官方解释吧 (http://msdn.microsoft.com/zh-cn/library/system.text.stringbuilder(VS.80).aspx) String ...

  4. Python数据处理进阶——pandas

    对于python进行数据处理来说,pandas式一个不得不用的包,它比numpy很为强大.通过对<利用python进行数据分析>这本书中介绍pandas包的学习,再加以自己的理解,写下这篇 ...

  5. EasyUI datagrid默认勾选checkbox时注意事项

    在使用easyui的datagrid默认选中复选框时遇到的一个问题:就是加载程序默认选中复选框时死活选不中,查了好多资料才知道是easyui的datagrid的singleSelect属性设置为‘tr ...

  6. 单Js 的重力游戏开发

    最近在用看cocos的时候萌生的想法,单纯js实现重力原理.然后就做了一个这样的小游戏.姑且命名为<超级玛丽>! 因为之前有人要我做超级玛丽.哈哈哈哈哈哈!这也算完成任务了吧. 先说一下原 ...

  7. 深入解析MySQL视图view

    阅读目录---深入解析MySQL视图view 创建视图 查看视图 视图的更改 create or replace view alter DML drop 使用with check option约束 嵌 ...

  8. laytpl--前端数据绑定

    发现一枚前端数据绑定导弹:laytpl,官网:http://www.layui.com/laytpl/ 为了不用angularJS等较为重量级的,和繁琐的配置,所以就用了laytpl,可以配合JQ使用 ...

  9. javascript的面向对象详解

    每次说到javascript到面向对象,总感觉自己心里懂,但是却不知道该怎么说,这就是似懂非懂到表现,于是乎,每次一说,就要到处去查找资料,零零碎碎到看了一些,感觉有懂了,但是过段时间,好像又不知道是 ...

  10. C# 在iis windows authentication身份验证下,如何实现域用户自动登录

    前言: 该博文产生的背景是有个项目在客户那部署方式为iis windows身份验证,而客户不想每次登录系统都要输入帐号和密码来登录. 因此需要得到域用户,然后进行判断该用户是否可以进入系统. 解决方法 ...