Painter's Problem
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 4420   Accepted: 2143

Description

There is a square wall which is made of n*n small square bricks. Some bricks are white while some bricks are yellow. Bob is a painter and he wants to paint all the bricks yellow. But there is something wrong with Bob's brush. Once he uses this brush to paint brick (i, j), the bricks at (i, j), (i-1, j), (i+1, j), (i, j-1) and (i, j+1) all change their color. Your task is to find the minimum number of bricks Bob should paint in order to make all the bricks yellow. 

Input

The first line contains a single integer t (1 <= t <= 20) that indicates the number of test cases. Then follow the t cases. Each test case begins with a line contains an integer n (1 <= n <= 15), representing the size of wall. The next n lines represent the original wall. Each line contains n characters. The j-th character of the i-th line figures out the color of brick at position (i, j). We use a 'w' to express a white brick while a 'y' to express a yellow brick.

Output

For each case, output a line contains the minimum number of bricks Bob should paint. If Bob can't paint all the bricks yellow, print 'inf'.

Sample Input

2
3
yyy
yyy
yyy
5
wwwww
wwwww
wwwww
wwwww
wwwww

Sample Output

0
15
 #include <iostream>
#include <stdio.h>
#include <algorithm>
#include <math.h>
#include <string.h>
#include <set>
using namespace std;
const int MAXN=;
int a[MAXN][MAXN];
int x[MAXN];
bool free_x[MAXN];
inline int gcd(int a,int b)
{
int t;
while(b!=)
{
t=b;
b=a%b;
a=t;
}
return a;
}
inline int lcm(int a,int b)
{
return a/gcd(a,b)*b;
}
int Gauss(int equ,int var)
{
int i,j,k;
int max_r;
int col;
col=;
for(k = ; k < equ && col < var; k++,col++)
{
max_r=k;
for(i=k; i<equ; i++)
{
if(a[i][col])
{
max_r=i;
break;
}
}
if(max_r!=k)
{
for(j=k; j<var+; j++) swap(a[k][j],a[max_r][j]);
}
if(a[k][col]==)
{
k--;
continue;
}
for(i=; i<equ; i++)
{
if(i!=k&&a[i][col]!=)
{
for(j=; j<var+; j++)
{
a[i][j]^= a[k][j];
}
}
}
}
for (i = k; i < equ; i++)
{
if (a[i][col] != ) return ;
}
return ;
}
int main()
{
int n,m,t,i,j;
cin>>t;
char x;
while(t--)
{
memset(a,,sizeof(a));
cin>>n;
m=n*n;
for(i=; i<m; i++)
{
if(i%n==)getchar();
x=getchar();
if(x!='y')a[i][m]=;
}
for(i=; i<m; i++)
{
a[i][i]=;
if(i-n>=)
a[i][i-n]=;
if(i+n<m)
a[i][i+n]=;
if(i%n)
a[i][i-]=;
if((i+)%n)
a[i][i+]=;
}
if(!Gauss(m,m))cout<<"inf"<<endl;
else
{
int ans=;
for(i=; i<m; i++)ans+=a[i][m]&;
cout<<ans<<endl;
}
}
}

Painter's Problem poj1681 高斯消元法的更多相关文章

  1. poj1681 Painter's Problem(高斯消元法,染色问题)

    题意: 一个n*n 的木板 ,每个格子 都 可以 染成 白色和黄色,( 一旦我们对也个格子染色 ,他的上下左右都将改变颜色): 给定一个初始状态 , 求将 所有的 格子 染成黄色 最少需要染几次?  ...

  2. (模板)poj1681 高斯消元法求异或方程组(无解、唯一解、多解)

    题目链接:https://vjudge.net/problem/POJ-1681 题意:类似于poj1222,有n×n的01矩阵,翻转一个点会翻转其上下左右包括自己的点,求最少翻转多少点能使得矩阵全0 ...

  3. poj 1681 Painter's Problem

    Painter's Problem 题意:给一个n*n(1 <= n <= 15)具有初始颜色(颜色只有yellow&white两种,即01矩阵)的square染色,每次对一个方格 ...

  4. POJ 1681 Painter's Problem 【高斯消元 二进制枚举】

    任意门:http://poj.org/problem?id=1681 Painter's Problem Time Limit: 1000MS   Memory Limit: 10000K Total ...

  5. [POJ1681]Painter's Problem(高斯消元,异或方程组,状压枚举)

    题目链接:http://poj.org/problem?id=1681 题意:还是翻格子的题,但是这里有可能出现自由变元,这时候枚举一下就行..(其实这题直接状压枚举就行) /* ━━━━━┒ギリギリ ...

  6. [Gauss]POJ1681 Painter's Problem

    和POJ1222(分析)完全相同 题意也类似, 可以涂自己以及上下左右五个位置的颜色 问几次能全部涂色 不能输出inf 01方程组 用异或来求解就好了 ][]; // 增广矩阵 ]; // 解 ]; ...

  7. poj1681 Painter's Problem

    题目描述: 和那道关灯差不多,求最少涂几次. 题解: 高消,然后深搜枚举自由元更新答案. 貌似这道题没卡贪心但是其他题基本都卡了. 比如$Usaco09Nov$的$lights$ 代码: #inclu ...

  8. POJ1681 Painter's Problem(高斯消元)

    题目看似与线性方程组无关,但可以通过建模转化为线性方程组的问题. 对于一块砖,刷两次是没有必要的,我们令x=1表示刷了一次,x=0没有刷,一共有n*n个,所以相当于有n*n个未知量x. 定义aij表示 ...

  9. OpenJudge 2813 画家问题 / Poj 1681 Painter's Problem

    1.链接地址: http://bailian.openjudge.cn/practice/2813 http://poj.org/problem?id=1681 2.题目: 总时间限制: 1000ms ...

随机推荐

  1. Redis[三] @Hash 哈希

    Redis的哈希值是字符串字段和字符串值之间的映射,所以他们是表示对象的完美数据类型 在Redis中的哈希值,可存储超过400十亿键值对. redis 提供了2套操纵 一种是批量 一种是非批量 假设需 ...

  2. java面向对象(五)之多态

    多态 面向对象编程有三大特性:封装.继承.多态. 封装隐藏了类的内部实现机制,可以在不影响使用的情况下改变类的内部结构,同时也保护了数据.对外界而已它的内部细节是隐藏的,暴露给外界的只是它的访问方法. ...

  3. java对象 深度克隆(不实现Cloneable接口)和浅度克隆

    详见:http://blog.yemou.net/article/query/info/tytfjhfascvhzxcyt128 为什么需要克隆: 在实际编程过程中,我们常常要遇到这种情况:有一个对象 ...

  4. 手机端rem适应

    这段时间做了几个手机版的项目,因为没有用框架,所以用rem来做适应,下面就分享一下 //第一种是比较简单的代码 (function(win) { resizeRoot(); function resi ...

  5. UICollectionView中Cell左对齐 居中 右对齐 等间距------你想要的,这里都有

    支持靠左,居中,靠右,等间距对齐. 靠左等间距.png 居中等间距.png 靠右等间距.png #import <UIKit/UIKit.h> typedef NS_ENUM(NSInte ...

  6. [js高手之路]Vue2.0基于vue-cli+webpack同级组件之间的通信教程

    我们接着上文继续,本文我们讲解兄弟组件的通信,项目结构还是跟上文一样. 在src/assets目录下建立文件EventHandler.js,该文件的作用在于给同级组件之间传递事件 EventHandl ...

  7. wineshark分析抓取本地回环包

    wineshark分析抓取本地回环包 摘要 由于windows系统没有提供本地回环网络的接口,用Wireshark监控网络的话看不到localhost的流量.想要获取本地的网络数据包,可以通过一款小巧 ...

  8. C语言程序设计课程设计自查表格

    课程设计自查表格 序号 项目 完成与否(完成打勾) 1 格式是否符合标准(缩进是否规范) 2 是否模块化设计(使用函数分解系统功能) 3 函数名否易懂(不得使用f1(int a1,int a2)这样的 ...

  9. java简单数据类型转化

    java简单数据类型,有低级到高级为:(byte,short,char)→int→long→float→double (boolean不参与运算转化) 转化可以分为 低级到高级的自动转化 高级到低级的 ...

  10. 201521123040《Java程序设计》第8周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结集合与泛型相关内容. 2. 书面作业 本次作业题集集合 1.List中指定元素的删除(题目4-1) 1.1 实验总结 我们每次删除元 ...