1. 激活函数:

1)Sigmoid,σ(x)=1/(1+e-x)。把输出压缩在(0,1)之间。几个问题:(a)x比较大或者比较小(比如10,-10),sigmoid的曲线很平缓,导数为0,在用链式法则的时候,后一层传回来的导数乘以sigmoid的导数也是0了,换句话说,对于sigmoid饱和的区域后一层的导数传不到前面去了。(b)输出永远为正,即下一层的输入永远为正,我们希望输入的均值为0。(c)exp还是稍微有点难计算。

2)tanh(x),输出压缩在[-1,+1]之间,比sigmoid的进步在于输出有正有负以0为中心。

3)ReLU(Rectified Linear Unit),f(x)=max(0,x)。优点:(a)在正方向不会饱和。(b)计算简单。(c)实际中比sigmoid和tanh都收敛的快的多。(d)更像生物学神经元。缺点:(a)not zero-centered output。(b)负方向全部是0.

实际使用中,会给ReLU神经元一个正向的bias,比如0.01。

4)Leaky ReLU,f(x)=max(0.01x, x)。优点:有ReLU的所有优点,另外它在负方向也不会饱和,所以总是不会失效。

类似的有Parametric Rectifier (PReLU),f(x)=max(αx, x)。

5)Exponential Linear Units (ELU)。x>0时,f(x)=x, x<=0时,f(x)=α(exp(x)-1)。优点:有ReLU的所有优点,相比于Leaky ReLU,它更鲁邦。但计算过程需要exp(),计算稍微复杂一点。

6)Maxout “Neuron”,f(x)=max(wT1x+b1, wT2x+b2),是对ReLU和Leaky ReLU的推广,正负方向都是线性,不会饱和。缺点是花了两倍的参数。

总结:(a)用ReLU,注意学习率。(b)尝试Leaky ReLU/Maxout/ElU。(c)尝试tanh,但不要期望太好。(d)不要用sigmoid。

2. 数据预处理:中心化,所有样本的均值设为0,标准差设为1。中心化的目的是把每个样本都放到同一个尺度下去考虑,对于图像来说,由于像素的值已经被归一化到0~255之间,所以中心化的诉求会轻一些。 有时候还会用PCA去掉相关性,让协方差矩阵成为对角矩阵。也会Whiten操作,把协方差矩阵变换为单位矩阵。

3. 权重W的初始化:这是很重要的研究课题,有很多paper。

  1)小随机数,W = 0.01*np.random.randn(D, H)。这种方式对浅网络有效,对深层网络不好,每层的输出会很快衰减到0。

  2)大随机数,W = np.random.randn(D, H),很容易饱和。

  3)Xavier initialization,W = np.random.randn(node_in, node_out) / np.sqrt(node_in),Glorot et al., 2010,论文的数学推导是基于线性激活函数,对于非线性激活函数就无效了。

  4)He initialization,W = np.random.randn(node_in, node_out) / np.sqrt(node_in / 2),He et al., 2015,直观的解释是:在ReLU网络中,假定每一层有一半的神经元被激活,另一半为0,所以,要保持variance不变,只需要在Xavier的基础上再除以2。

4. Batch Normalization:在线性变换(全连接层、卷积层)之后对输出进行归一化,然后再非线性化激活,Loffe and Szegedy,2015。直观的解释是:我们想要的是在非线性activation之前,输出值应该有比较好的分布(例如高斯分布),以便于back propagation时计算gradient,更新weight。Batch Normalization将输出值强行做一次Gaussian Normalization和线性变换。

  归一化成均值为0,方差为1之后,我们也不能保证说这种归一化就一定好,于是往往又会给它自由度调整自己的均值和方差。

  Batch Normalization降低了对初始化好坏的依赖。

  注意在训练阶段,mean/std是基于batch计算出来的,而在测试阶段,mean/std则是用训练阶段得到的某个固定值(比如取平均),而不是基于bach计算。

5. 深度学习的一般流程:

  1)归一化输入,减去均值,除以方差。

  2)检查Loss是否合理,先不要考虑正则化项,得到一个loss值,看这个值合理么;然后考虑正则化项,这时候的loss值应该比之前大了一些。

  3)先用小的训练集,关掉正则化项,这时候算法要能过拟合,得到很小的loss,接近0。

  4)用全部的训练集,设一个小的正则化项,找learning rate使得loss可以下降。Loss不下降或者下降很慢,说明learning rate设小了,需要增大。Loss变成无穷大NaN,说明learning rate设太大了,需要减小。Learning rate一般在[1e-3, 1e-5]。

6. 超参数的选取:用cross-validation从粗糙到精细地搜索。开始,只需要迭代几次,就可以很直观的看超参数如何影响,最好是把超参数在它的空间随机选取,如果一定要有规律,那就按10的n次方选取,线性的搜索太慢了。然后,迭代多一点,更精细的找。如果loss超过最开始值的三倍,就可以放弃这组参数了。另外一个经验是:更新的量和原来的值的比值update/value在0.001、0.01周围比较好,太大太好都不好。

  超参数包括:网络的结构,学习率,正则化项等。这些参数里,学习率是最影响结果的,要优先调,正则化什么的相对次要一些。

cs231n spring 2017 lecture6 Training Neural Networks I 听课笔记的更多相关文章

  1. cs231n spring 2017 lecture7 Training Neural Networks II 听课笔记

    1. 优化: 1.1 随机梯度下降法(Stochasitc Gradient Decent, SGD)的问题: 1)对于condition number(Hessian矩阵最大和最小的奇异值的比值)很 ...

  2. cs231n spring 2017 lecture6 Training Neural Networks I

    1. 激活函数: 1)Sigmoid,σ(x)=1/(1+e-x).把输出压缩在(0,1)之间.几个问题:(a)x比较大或者比较小(比如10,-10),sigmoid的曲线很平缓,导数为0,在用链式法 ...

  3. cs231n spring 2017 lecture7 Training Neural Networks II

    1. 优化: 1.1 随机梯度下降法(Stochasitc Gradient Decent, SGD)的问题: 1)对于condition number(Hessian矩阵最大和最小的奇异值的比值)很 ...

  4. cs231n spring 2017 lecture10 Recurrent Neural Networks 听课笔记

    (没太听明白,下次重新听一遍) 1. Recurrent Neural Networks

  5. cs231n spring 2017 lecture10 Recurrent Neural Networks

    (没太听明白,下次重新听一遍) 1. Recurrent Neural Networks

  6. cs231n spring 2017 lecture5 Convolutional Neural Networks听课笔记

    1. 之前课程里,一个32*32*3的图像被展成3072*1的向量,左乘大小为10*3072的权重矩阵W,可以得到一个10*1的得分,分别对应10类标签. 在Convolution Layer里,图像 ...

  7. cs231n spring 2017 lecture5 Convolutional Neural Networks

    1. 之前课程里,一个32*32*3的图像被展成3072*1的向量,左乘大小为10*3072的权重矩阵W,可以得到一个10*1的得分,分别对应10类标签. 在Convolution Layer里,图像 ...

  8. cs231n spring 2017 lecture3 Loss Functions and Optimization 听课笔记

    1. Loss function是用来量化评估当前预测的好坏,loss function越小表明预测越好. 几种典型的loss function: 1)Multiclass SVM loss:一般的S ...

  9. cs231n spring 2017 lecture8 Deep Learning Networks 听课笔记

    1. CPU vs. GPU: CPU核心少(几个),更擅长串行任务.GPU有很多核心(几千个),每一个核都弱,有自己的内存(几个G),很适合并行任务.GPU最典型的应用是矩阵运算. GPU编程:1) ...

随机推荐

  1. 解决iOS手势冲突问题

    今天在做一个效果的时候,由于子视图和父视图都有响应的事件,子视图的事件理所当然被父视图拦截掉了,接下来就做分析解决 1.  tableviewcell可以触发点击,同时tableview的父视图有点击 ...

  2. Django学习(3)模板定制

    在Django学习(一)一首情诗中,views.py中HTML被直接硬编码在代码之中,虽然这样便于解释视图是如何工作的,但直接将HTML硬编码到视图却不算一个好主意.因为: 对页面设计进行的任何改变都 ...

  3. 53、css补充

    css其余问题补充 一.默认的高度和宽度问题 1.父子都是块级元素 <!DOCTYPE html> <html> <head> <title>...&l ...

  4. adb devices找不到设备解决办法

    问题现象: 解决办法: 1.在设备管理器Android Device中找到设备硬件Id USB\VID对应值: 3.找到.android目录,找到adb_usb.ini文件,如果没有此文件则新建一个, ...

  5. 【java设计模式】【行为模式Behavioral Pattern】迭代器模式Iterator Pattern

    package com.tn.pattern; public class Client { public static void main(String[] args) { Object[] objs ...

  6. iOS OC应用异常捕获,崩溃退出前返回信息给后台

    第三方的了,有友盟,腾讯的bugly 查了一下网上类似的代码很多,在借鉴前辈的代码后,组合了一下: 1.捕获异常信息 2.获得当前日期,版本,系统 3.获得出bug的视图控制器转为字符串 4.将前3条 ...

  7. MySQL MVCC机制

    本文同时发表在https://github.com/zhangyachen/zhangyachen.github.io/issues/68 行结构 每一行额外包含三个隐藏字段: DB_TRX_ID:事 ...

  8. bzoj 2298: [HAOI2011]problem a

    Description 一次考试共有n个人参加,第i个人说:"有ai个人分数比我高,bi个人分数比我低."问最少有几个人没有说真话(可能有相同的分数) Input 第一行一个整数n ...

  9. bzoj 2119: 股市的预测

    Description 墨墨的妈妈热爱炒股,她要求墨墨为她编写一个软件,预测某只股票未来的走势.股票折线图是研究股票的必备工具,它通过一张时间与股票的价位的函数图像清晰地展示了股票的走势情况.经过长时 ...

  10. eclipse 更换 JDK 版本后报错

    在实际开发过程中,可能由于项目的需要,我们需要更换 JDK 的版本.但是更换后会报错,如下: Java compiler level does not match the version of the ...