「CTSC 2013」组合子逻辑
Tag
堆,贪心
Description
给出一个数列 \(n\) 个数,一开始有一个括号包含 \([1,n]\),你需要加一些括号,使得每个括号(包括一开始的)所包含的元素个数 \(\leq\) 这个括号左端点那个数的大小。当一个括号包含另一个括号时,里面那个括号内所有数整体被看做是一个元素。无解输出 \(-1\)。\(N\leq 2\times 10^6\)
Solution
(这是谁!!!写的题面!!!(╯‵□′)╯︵┻━┻
\(k\) 表示当前的最大值还能再包含多少位,当前的最大值不一定要包含当前位,只要求出正确结果即可。
Code
#include <cstdio>
#include <queue>
int a[2000005];
std::priority_queue<int> Q;
int read() {
int x = 0; char c = getchar();
while (c < '0' || c > '9') c = getchar();
while (c >= '0' && c <= '9') {
x = (x << 3) + (x << 1) + (c ^ 48);
c = getchar();
}
return x;
}
int main() {
int T = read();
while (T--) {
int n = read();
if (n == 1) {
puts(read() ? "0" : "-1");
continue;
}
for (int i = 1; i <= n; ++i) a[i] = read();
int k = a[1] - 1, ans = 1;
while (!Q.empty()) Q.pop();
for (int i = 2; i <= n; ++i) {
if (k) --k;
else {
if (Q.empty() || Q.top() < 2) { ans = -1; break; }
++ans, k = Q.top() - 2, Q.pop();
}
Q.push(a[i]);
}
printf("%d\n", ans);
}
return 0;
}
「CTSC 2013」组合子逻辑的更多相关文章
- 「CTSC 2011」排列
「CTSC 2011」排列 要求不存在公差为 A 或者公比为 B 的子列,那么实际上可以把该问题转化为求一个图的最优拓朴序. 任意差为 A 或者比为 B 的两个数连一条边. 求一个合法序列的答案可以用 ...
- [学习] 从 函数式编程 到 lambda演算 到 函数的本质 到 组合子逻辑
函数式编程 阮一峰 <函数式编程初探>,阮一峰是<黑客与画家>的译者. wiki <函数编程语言> 一本好书,<计算机程序的构造与解释>有讲到schem ...
- 「CTSC 2011」幸福路径
[「CTSC 2011」幸福路径 蚂蚁是可以无限走下去的,但是题目对于精度是有限定的,只要满足精度就行了. \({(1-1e-6)}^{2^{25}}=2.6e-15\) 考虑使用倍增的思想. 定义\ ...
- BZOJ3152[Ctsc2013]组合子逻辑——堆+贪心
题目链接: BZOJ3152 题目大意: 一开始有一个括号包含[1,n],你需要加一些括号,使得每个括号(包括一开始的)所包含的元素个数要<=这个括号左端点那个数的大小,当一个括号包含另一个括号 ...
- 「HNOI 2013」游走
题目链接 戳我 \(Solution\) 首先申明几个变量: f[x]:到点x的概率, vis[x]:x点的度 dp[x][y]:(x,y)这条边的概率 number[x][y]:x这条边的编号 下面 ...
- 「HNOI 2013」比赛
题目链接 戳我 \(Solution\) 这道题观察数据范围发现很小,再看看题目可以发现是搜索. 这题纯搜索会\(T\)所以要加入适当剪枝 如果一个人后面的比赛都赢却依旧到不了目标分数,则直接\(re ...
- 「HNOI 2013」消毒
题目链接 戳我 \(Solution\) 我们首先想一想如果这一题只是二维的该怎么办? 就是一个最小点覆盖问题.这里就不详细解释了,用网络流或匈牙利都无所谓. 但现在是三维的,那么现在该如何处理呢? ...
- 「HNOI 2013」数列
题目链接 戳我 \(Solution\) 这道题貌似并不难的样子\(QAQ\) 我们发现这个因为有首项的关系所以有点不太好弄.所以我们要将这个首项对答案的影响给去掉. 我们可以构建一个差分数组,我们令 ...
- 「NOIP 2013」 货车运输
题目链接 戳我 \(Solution\) 这一道题直接用\(kruskal\)重构树就好了,这里就不详细解释\(kruskal\)重构树了,如果不会直接去网上搜就好了.接下来讲讲详细过程. 首先构建\ ...
随机推荐
- Xtrabackup 物理备份
目录 Xtrabackup 安装 Xtrabackup 备份介绍 Xtrabackup全量备份 准备备份目录 全量备份 查看全量备份内容 Xtrabackup 全量备份恢复数据 删除所有数据库 停止数 ...
- PTA L1-006 连续因子【暴力模拟】
一个正整数N的因子中可能存在若干连续的数字.例如630可以分解为3*5*6*7,其中5.6.7就是3个连续的数字.给定任一正整数N,要求编写程序求出最长连续因子的个数,并输出最小的连续因子序列. 输入 ...
- mybaits(七)spring整合mybaits
与 Spring 整合分析 http://www.mybatis.org/spring/zh/index.html 这里我们以传统的 Spring 为例,因为配置更直观,在 Spring 中使用配置类 ...
- In_array()函数弱比较
0x01 定义 (PHP 4, PHP 5, PHP 7) in_array - 检查数组中是否存在某个值 说明 in_array ( mixed $needle , array $haystack ...
- Vue UI lib missing vue bug
Vue UI lib missing vue bug Error Uncaught TypeError: Cannot read property 'prototype' of undefined a ...
- how to auto open demo and create it in a new codesandbox
how to auto open demo and create it in a new codesandbox markdown & iframe https://ant.design/do ...
- HTML5 Animation Creator | Hype 官方文档
HTML5 Animation Creator | Hype 官方文档 HTML5 Animation Build 7个 专业术语 场景,元素,属性,关键帧,动画,时间线,操作 Hype 官方文档 h ...
- .bashrc & rename hostname & rename username
.bashrc & rename hostname & rename username mbp $ pwd $ cd ~ $ pwd $ cat .bashrc $ vim .bash ...
- uniapp 创建简单的tabs
tabs组件 <template> <view class="tabs"> <view class="bar" :style=&q ...
- 「NGK每日快讯」2021.2.8日NGK公链第97期官方快讯!