题面

传送门:https://www.luogu.org/problemnew/show/P1268


Solution

这是一道极其巧妙的构造题

先做一个约定[i,j]表示从i到j的距离

我们可以先从n=2,也就是最简单的情况来切入这道题

对于n=2,答案显然是[1,2]

接下来考虑n=3

如下图所示

这棵树一定是长成这样的

也就是说三这个节点一定是插在1与2两个节点之间的

我们可以发现,3节点的插入使得树的权值增加了([1,3]+[2,3]-[1,2])/2 (即紫线与蓝线的权值和减去绿线除以二)

我们可以把这个权值贡献的式子推广到一般情况

即x节点插入在[i,j]路径上

其对答案的贡献为([i,x]+[j,x]-[i,j])/2

接下来,我们继续把之前的结论推广到一般情况

四号节点接下来是不是有可能加入在[1,2],[1,3],[2,3]这三条路径中

答案要求整棵树权值和尽可能小,我们只需要在三种情况中选最小值就好

我想你已经找到了一个O(n^3)的算法

就是枚举3~n的插入点,再用两层循环枚举所插入的边

复杂度O(n^3)

事实上,我们已经可以过这道题了.

但我们的复杂度还可以更优

重新再看一下这张图

是不是可以发现我们紫色的那个其实是重复枚举

因为[1,4]+[3,4]-[1,3] 和[2,4]+[3,4]-[2,3] 其实都是一毛一样的!!!

这个结论也可以推广至一般状况中

所以说我们完全可以省去枚举中的一维

只枚举1~n就好

时间复杂度O(n^2)


Code

//Luogu P1268 树的重量
//May,30th,2018
//构造妙题
#include<iostream>
#include<cstdio>
using namespace std;
long long read()
{
long long x=0,f=1; char c=getchar();
while(!isdigit(c)){if(c=='-') f=-1;c=getchar();}
while(isdigit(c)){x=x*10+c-'0';c=getchar();}
return x*f;
}
const int N=30+5;
int n,a[N][N];
int main()
{
while(1)
{
memset(a,0,sizeof a);
int ans=0;
n=read();
if(n==0) break;
for(int i=1;i<n;i++)
for(int j=i+1;j<=n;j++)
a[i][j]=a[j][i]=read(); ans+=a[1][2];
for(int i=3;i<=n;i++)
{
int t_ans=0x3f3f3f3f;
for(int j=1;j<i;j++)
for(int k=1;k<j;k++)
t_ans=min(t_ans,(a[j][i]+a[k][i]-a[j][k])/2);
ans+=t_ans;
}
printf("%d\n",ans);
}
return 0;
}

正解(三方)(C++)

//Luogu P1268 树的重量
//May,30th,2018
//构造妙题
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
long long read()
{
long long x=0,f=1; char c=getchar();
while(!isdigit(c)){if(c=='-') f=-1;c=getchar();}
while(isdigit(c)){x=x*10+c-'0';c=getchar();}
return x*f;
}
const int N=30+5;
int n,a[N][N];
int main()
{
while(1)
{
memset(a,0,sizeof a);
int ans=0;
n=read();
if(n==0) break;
for(int i=1;i<n;i++)
for(int j=i+1;j<=n;j++)
a[i][j]=a[j][i]=read(); ans+=a[1][2];
for(int i=3;i<=n;i++)
{
int t_ans=0x3f3f3f3f;
for(int j=1;j<i;j++)
t_ans=min(t_ans,(a[j][i]+a[1][i]-a[j][1])/2);
ans+=t_ans;
}
printf("%d\n",ans);
}
return 0;
}

正解(平方)(C++)

[Luogu P1268] 树的重量 (巧妙的构造题)的更多相关文章

  1. luogu p1268 树的重量——构造,真正考验编程能力

    题目链接:http://www.luogu.org/problem/show?pid=1268#sub -------- 这道题费了我不少心思= =其实思路和标称毫无差别,但是由于不习惯ACM风格的题 ...

  2. 【luogu P1268 树的重量】 题解

    题目链接:https://www.luogu.org/problemnew/show/P1268 给定所有点间的最短路求原图所有路径和 形如: 我们需要计算红边+绿边 绿边 = (红边+蓝边+紫边)/ ...

  3. luogu P1268 树的重量

    一开始把这题想复杂了,,, 这里记\(di[i][j]\)表示\(i\)到\(j\)的距离 首先如果\(n=2\),答案显然为\(di[1][2]\) 如果\(n=3\) 懒得画图了盗图过来 那么3号 ...

  4. 洛谷—— P1268 树的重量

    P1268 树的重量 构造类题目,看不出个所以然来... emmm,只好看题解: 只有两个点,那一条路径就是$ans$ 考虑三个点,那么$3$这个点相对于树上的路径(已经加入树上的边的距离) 为:$( ...

  5. 洛谷P1268 树的重量

    P1268 树的重量 85通过 141提交 题目提供者该用户不存在 标签树形结构 难度提高+/省选- 提交该题 讨论 题解 记录 最新讨论 有这种情况吗!!!! 题意似乎有问题 题目描述 树可以用来表 ...

  6. 洛谷 P1268 树的重量 解题报告

    P1268 树的重量 题目描述 树可以用来表示物种之间的进化关系.一棵"进化树"是一个带边权的树,其叶节点表示一个物种,两个叶节点之间的距离表示两个物种的差异.现在,一个重要的问题 ...

  7. 洛谷P1268 树的重量 【构造 + 枚举】

    题目描述 树可以用来表示物种之间的进化关系.一棵"进化树"是一个带边权的树,其叶节点表示一个物种,两个叶节点之间的距离表示两个物种的差异.现在,一个重要的问题是,根据物种之间的距离 ...

  8. P1268 树的重量【构造】

    题目描述 树可以用来表示物种之间的进化关系.一棵“进化树”是一个带边权的树,其叶节点表示一个物种,两个叶节点之间的距离表示两个物种的差异.现在,一个重要的问题是,根据物种之间的距离,重构相应的“进化树 ...

  9. P1268 树的重量

    题目描述 树可以用来表示物种之间的进化关系.一棵“进化树”是一个带边权的树,其叶节点表示一个物种,两个叶节点之间的距离表示两个物种的差异.现在,一个重要的问题是,根据物种之间的距离,重构相应的“进化树 ...

随机推荐

  1. C++中try&catch

    参考:   https://blog.csdn.net/xueluowutong/article/details/81257654 在c++中,可以直接抛出异常之后自己进行捕捉处理,如:(这样就可以在 ...

  2. 跟着动画学习 TCP 三次握手和四次挥手

    TCP三次握手和四次挥手的问题在面试中是最为常见的考点之一.很多读者都知道三次和四次,但是如果问深入一点,他们往往都无法作出准确回答. 本篇尝试使用动画来对这个知识点进行讲解,期望读者们可以更加简单地 ...

  3. centos7 下 kafka的安装和基本使用

    首先确保自己的linux环境下正确安装了Java 8+. 1:取得KAFKA https://mirrors.bfsu.edu.cn/apache/kafka/2.6.0/kafka_2.13-2.6 ...

  4. DBA提交脚步规范

    工作中需要走脚步流程,申请修改数据库,总结一些常用的语句:)提交时注明为DDL/DML_需求号_日期(各公司标准不一样)//修改字段长度使用;alter table t_task modify tas ...

  5. Git hub加载慢?下载慢?浏览慢?几个小技巧让你一键起飞!

    记得,那是一个风和日丽,艳阳高照的夜晚,只因为当初的一次回眸,于是便决然走向了程序员的道路,从此,CV大法心中记,代码伴我身. 这一天,正当我打开电脑准备开开心心的使用CV大法完成任务的时候,却恼人的 ...

  6. day55 Pyhton 前端Jquery07

    昨日回顾: 表单,点击submit提交以后,服务端受到信息 import socket import pymysql from urllib.parse import unquote def run( ...

  7. spring boot:用swagger3生成接口文档,支持全局通用参数(swagger 3.0.0 / spring boot 2.3.2)

    一,什么是swagger? 1,  Swagger 是一个规范和完整的文档框架, 用于生成.描述.调用和可视化 RESTful 风格的 Web 服务文档 官方网站: https://swagger.i ...

  8. nginx优化:使用expires在浏览器端缓存静态文件

    一,nginx中expires指令的作用 网站的图片等静态文件一旦发布,通常很少改动, 为了减小对服务器请求的压力,提高用户浏览速度, 我们可以设置nginx中的expires, 使用户访问一次后,将 ...

  9. SELECT INTO与INSERT INTO SELECT用法

    SELECT INTO SELECT INTO 语句从一个表复制数据,然后把数据插入到另一个新表中: -- 创建 Websites 的备份,这种写法没走索引导致全表扫描 SELECT * INTO W ...

  10. linux文本三剑客之grep

    grep(global search regular expression(RE) and print out the line,全面搜索正则表达式并把行打印出来)是一种强大的文本搜索工具,它能使用正 ...