LINK:多项式对数函数 多项式 ln

如题 是一个模板题。刚学会导数

几个知识点 \([f(x)\cdot g(x)]'=f(x)'g(x)+f(x)g(x)',f(g(x))'=f'(g(x))g'(x)\)

求B(x)=ln A(x)

没啥好办法 同时对两边同时求导。

\(B'(x)=[lnA(x)]'=ln'(A(x))A'(x)=\frac{A'(x)}{A(x)}\)

然后对于后者分子直接逐项求导分母求逆。

最后就可以求出B'(x)了。然后利用不定积分来对这个东西进行积分求出原多项式即可。

积分公式:\(\int x^adx=\frac{1}{a+1}x^{a+1}\)

码就完事了。

一个出错的地方 \(\frac{A'(x)}{A(x)}\)这个东西在计算的时候 也是卷积。

//#include<bits\stdc++.h>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<queue>
#include<deque>
#include<stack>
#include<vector>
#include<algorithm>
#include<utility>
#include<bitset>
#include<set>
#include<map>
#define ll long long
#define db double
#define INF 1000000000000000ll
#define ldb long double
#define pb push_back
#define get(x) x=read()
#define gt(x) scanf("%d",&x)
#define put(x) printf("%d\n",x)
#define putl(x) printf("%lld\n",x)
#define gc(a) scanf("%s",a+1)
#define rep(p,n,i) for(RE int i=p;i<=n;++i)
#define go(x) for(int i=lin[x],tn=ver[i];i;tn=ver[i=nex[i]])
#define fep(n,p,i) for(RE int i=n;i>=p;--i)
#define pii pair<ll,ll>
#define mk make_pair
#define RE register
#define P 1000000007
#define mod 998244353
#define S second
#define F first
#define gf(x) scanf("%lf",&x)
#define pf(x) ((x)*(x))
#define ull unsigned long long
#define ui unsigned
using namespace std;
char buf[1<<15],*fs,*ft;
inline char getc()
{
return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;
}
inline int read()
{
register int x=0,f=1;register char ch=getc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getc();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getc();}
return x*f;
}
const int MAXN=300010,G=3;
int n,lim;
int a[MAXN],rev[MAXN],b[MAXN],B[MAXN],c[MAXN];//求出a'(x)/a(x).
//先求出a'(x).
inline int ksm(int b,int p)
{
int cnt=1;
while(p)
{
if(p&1)cnt=(ll)cnt*b%mod;
b=(ll)b*b%mod;
p=p>>1;
}
return cnt;
}
inline void NTT(int *a,int op)
{
rep(0,lim-1,i)if(i<rev[i])swap(a[i],a[rev[i]]);
for(int len=2;len<=lim;len=len<<1)
{
int mid=len>>1;
int wn=ksm(G,op==1?(mod-1)/len:mod-1-(mod-1)/len);
for(int j=0;j<lim;j+=len)
{
int d=1;
for(int i=0;i<mid;++i)
{
int x=a[i+j],y=(ll)a[i+j+mid]*d%mod;
a[i+j]=(x+y)%mod;a[i+j+mid]=(x-y+mod)%mod;
d=(ll)d*wn%mod;
}
}
}
if(op==-1)
{
int INV=ksm(lim,mod-2);
rep(0,lim-1,i)a[i]=(ll)a[i]*INV%mod;
}
}
inline void solve(int len,int *a,int *b)
{
if(len==1)
{
b[0]=ksm(a[0],mod-2);
//cout<<b[0]<<endl;
return;
}
solve((len+1)>>1,a,b);
lim=1;while(lim<len+len)lim=lim<<1;
rep(0,lim-1,i)
{
rev[i]=rev[i>>1]>>1|((i&1)?lim>>1:0);
if(i<=len-1)c[i]=a[i];else c[i]=0;
}
NTT(c,1);NTT(b,1);
rep(0,lim-1,i)b[i]=((2-1ll*c[i]*b[i]%mod)*b[i]%mod+mod)%mod;
NTT(b,-1);
for(int i=len;i<lim;++i)b[i]=0;
}
int main()
{
//freopen("1.in","r",stdin);
get(n);rep(0,n-1,i)get(a[i]);
rep(0,n-2,i)b[i]=(ll)a[i+1]*(i+1)%mod;
//rep(0,n-1,i)printf("%d ",b[i]);
//求a(x)的逆
solve(n,a,B);
//rep(0,n-1,i)printf("%d ",B[i]);
lim=1;while(lim<n+n)lim=lim<<1;
NTT(b,1);NTT(B,1);
rep(0,lim-1,i)c[i]=(ll)b[i]*B[i]%mod;
//对C(x)求不定积分.
NTT(c,-1);
fep(n-1,1,i)c[i]=(ll)c[i-1]*ksm(i,mod-2)%mod;
c[0]=0;rep(0,n-1,i)printf("%d ",c[i]);
return 0;
}

luogu P4725 多项式对数函数(多项式 ln)的更多相关文章

  1. 洛谷P4725 【模板】多项式对数函数(多项式ln)

    题意 题目链接 Sol 这个不用背XD 前置知识: \(f(x) = ln(x), f'(x) = \frac{1}{x}\) \(f(g(x)) = f'(g(x)) g'(x)\) 我们要求的是\ ...

  2. 多项式总结&多项式板子

    多项式总结&多项式板子 三角/反三角是不可能放的(也不可能真香的 多项式乘法(DFT,FFT,NTT,MTT) 背板子 前置知识:泰勒展开 如果\(f(x)\)在\(x_0\)处存在\(n\) ...

  3. 【Cogs2187】帕秋莉的超级多项式(多项式运算)

    [Cogs2187]帕秋莉的超级多项式(多项式运算) 题面 Cogs 题解 多项式运算模板题 只提供代码了.. #include<iostream> #include<cstdio& ...

  4. luogu P4725 多项式对数函数 (模板题、FFT、多项式求逆、求导和积分)

    手动博客搬家: 本文发表于20181125 13:25:03, 原地址https://blog.csdn.net/suncongbo/article/details/84487306 题目链接: ht ...

  5. luogu 4725 【模板】多项式对数函数(多项式 ln)

    $G(x)=ln(A(x))$ $G'(x)=ln'(A(x))A'(x)=\frac{A'(x)}{A(x)}$     由于求导和积分是互逆的,所以对 $G$ 求积分,即 $G(x)=\int\f ...

  6. luogu P4726 多项式指数函数(模板题FFT、多项式求逆、多项式对数函数)

    手动博客搬家: 本文发表于20181127 08:39:42, 原地址https://blog.csdn.net/suncongbo/article/details/84559818 题目链接: ht ...

  7. Luogu 4725 【模板】多项式对数函数

    继续补全模板. 要求 $$g(x) = ln f(x)$$ 两边求导, $$g'(x) = \frac{f'(x)}{f(x)}$$ 然后左转去把多项式求导和多项式求逆的模板复制过来,就可以计算出$g ...

  8. [洛谷P4725]【模板】多项式对数函数

    题目大意:给出$n-1$次多项式$A(x)$,求一个 $\bmod{x^n}$下的多项式$B(x)$,满足$B(x) \equiv \ln A(x)$.在$\bmod{998244353}$下进行.保 ...

  9. 洛谷P4725 【模板】多项式对数函数(多项式运算)

    传送门 前置芝士:微积分(有所了解即可)(可以看看这篇,写得非常详细我看了两章就看不下去了) 以下都是一些简单的教程切莫当真,仅供理解,建议看更严谨的 导数:对于一个函数$f(x)$,它的导数$f'( ...

随机推荐

  1. 让 JavaScript 与 CSS 和 Sass 对话

    JavaScript 和 CSS 已经并存超过了 20 年.但是在它们之间共享数据非常困难.当然也有大量的尝试.但是我所想到的是一些简单而直观的内容——不涉及结构更改,而是使用 CSS 自定义属性甚至 ...

  2. 什么是DevOps?该如何正确的在企业内进行实践

    传统IT技术团队中通常都有多个独立的组织-开发团队.测试团队和运维团队.开发团队进行软件开发.测试团队进行软件测试,运维团队致力于部署,负载平衡和发布管理. 他们之间的职能有时重叠.有时依赖.有时候会 ...

  3. 状压dp大总结1 [洛谷]

    前言 状态压缩是一种\(dp\)里的暴力,但是非常优秀,状态的转移,方程的转移和定义都是状压\(dp\)的难点,本人在次总结状压dp的几个题型和例题,便于自己以后理解分析状态和定义方式 状态压缩动态规 ...

  4. SCOI 2009 围豆豆(状压DP)

    SCOI 2009 围豆豆 题目描述 是不是平时在手机里玩吃豆豆游戏玩腻了呢?最近MOKIA手机上推出了一种新的围豆豆游戏,大家一起来试一试吧. 游戏的规则非常简单,在一个N×M的矩阵方格内分布着D颗 ...

  5. #pragma comment(linker,"/SECTION:shared,RWS")

    Windows在一个Win32程序的地址空间周围筑了一道墙.通常,一个程序的地址空间中的数据是私有的,对别的程序而言是不可见的.但是执行多个执行实体表示了程序的所有执行实体之间共享数据是毫无问题的.当 ...

  6. mysql常用时间函数与类型转换

    一.用到的函数有: 1.时间格式化函数  DATE_FORMAT(date,format) 2.时间加减函数DATE_ADD(date,INTERVAL expr unit)DATE_SUB(date ...

  7. 为什么有时候人们用translate来改变位置而不是定位?

    translate()是transform的一个值. 改变transform或opacity不会触发浏览器重新布局(reflow)或重绘(repaint),只会触发复合(compositions)(复 ...

  8. python 并发专题(十二):基础部分补充(四)协程

    相关概念: 协程:一个线程并发的处理任务 串行:一个线程执行一个任务,执行完毕之后,执行下一个任务 并行:多个CPU执行多个任务,4个CPU执行4个任务 并发:一个CPU执行多个任务,看起来像是同时执 ...

  9. Tomcat的结构

    Tomcat其实就是一个容器,最顶层的容器叫Server,代表整个服务器,Server中包含至少一个Service,用于具体提供服务.Service主要包含两部分:Connector和Containe ...

  10. 《利用Python进行数据分析》自学知识图谱-导航

    项目简介 Project Brief <利用Python进行数据分析-第二版>自学过程中整理的知识图谱. Python for Data Analysis: Data Wrangling ...