Codeforces Round #672 (Div. 2) C1. Pokémon Army (easy version) (DP)
题意:给你一组数\(a\),构造一个它的子序列\(b\),然后再求\(b_1-b2+b3-b4...\),问构造后的结果最大是多少.
题解:线性DP.我们用\(dp1[i]\)来表示在\(i\)位置,并且此时子序列的长度是奇数的情况,而\(dp2\)则是偶数情况,对于每个\(a_i\),\(dp[i]\)都可以选它或者不选,拿\(dp1[i]\)举例,如果选择\(a_i\),那么状态则可以从子序列中上一个位置转移过来,所以\(dp1[i]=dp2[i-1]+a[i]\),如果不选就是\(dp1[i]=dp1[i-1]\),二者维护一个最大值即可,对于\(dp2\)来说也是一样.
代码:
int t;
int n,q;
int a[N];
ll dp1[N],dp2[N]; int main() {
ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
cin>>t;
while(t--){
cin>>n>>q;
for(int i=1;i<=n;++i){
cin>>a[i];
}
for(int i=1;i<=n;++i){
dp1[i]=max(dp1[i-1],dp2[i-1]+a[i]);
dp2[i]=max(dp2[i-1],dp1[i-1]-a[i]);
}
cout<<max(dp1[n],dp2[n])<<endl;
} return 0;
}
Codeforces Round #672 (Div. 2) C1. Pokémon Army (easy version) (DP)的更多相关文章
- Codeforces Round #658 (Div. 2) C1. Prefix Flip (Easy Version) (构造)
题意:给你两个长度为\(n\)的01串\(s\)和\(t\),可以选择\(s\)的前几位,取反然后反转,保证\(s\)总能通过不超过\(3n\)的操作得到\(t\),输出变换总数,和每次变换的位置. ...
- C1. Pokémon Army (easy version) 解析(DP)
Codeforce 1420 C1. Pokémon Army (easy version) 解析(DP) 今天我們來看看CF1420C1 題目連結 題目 對於一個數列\(a\),選若干個數字,求al ...
- Codeforces Round #540 (Div. 3) F1. Tree Cutting (Easy Version) 【DFS】
任意门:http://codeforces.com/contest/1118/problem/F1 F1. Tree Cutting (Easy Version) time limit per tes ...
- Codeforces Round #540 (Div. 3)--1118F1 - Tree Cutting (Easy Version)
https://codeforces.com/contest/1118/problem/F1 #include<bits/stdc++.h> using namespace std; in ...
- Codeforces Round #599 (Div. 2) B1. Character Swap (Easy Version)
This problem is different from the hard version. In this version Ujan makes exactly one exchange. Yo ...
- Codeforces Round #599 (Div. 2) B1. Character Swap (Easy Version) 水题
B1. Character Swap (Easy Version) This problem is different from the hard version. In this version U ...
- Codeforces Round #653 (Div. 3) E1. Reading Books (easy version) (贪心,模拟)
题意:有\(n\)本书,A和B都至少要从喜欢的书里面读\(k\)本书,如果一本书两人都喜欢的话,那么他们就可以一起读来节省时间,问最少多长时间两人都能够读完\(k\)本书. 题解:我们可以分\(3\) ...
- Codeforces Round #650 (Div. 3) F1. Flying Sort (Easy Version) (离散化,贪心)
题意:有一组数,每次操作可以将某个数移到头部或者尾部,问最少操作多少次使得这组数非递减. 题解:先离散化将每个数映射为排序后所对应的位置,然后贪心,求最长连续子序列的长度,那么最少的操作次数一定为\( ...
- Codeforces Round #672 (Div. 2) A - C1题解
[Codeforces Round #672 (Div. 2) A - C1 ] 题目链接# A. Cubes Sorting 思路: " If Wheatley needs more th ...
随机推荐
- python模块详解 | selenium(持续更新中)
目录: 关于selenium Selenium 安装Selenium 安装浏览器驱动 配置环境变量 selenium方法详解 定位元素 元素操作 浏览器操作 鼠标事件 浏览器事件 设置元素等待 多表单 ...
- HashMap为什么效率高?来看看这个小demo
一.前情回顾:在程序中有时候需要存放对象,容器应运而生.容器分为集合和Map.集合在这里不说,说说Map.Map在英语中是地图的意思,这个名字真是起的好,可以让人顾名思义.Map,就是存放键值对的结构 ...
- docker 常用的容器命令
容器命令 # --name 给容器起名 # -p 端口映射 # -d 后台启动 # -it 交互模式启动 # 交互模式启动 # docker run -it 镜像名/id /bin/bash # do ...
- ps 2020 下载
一款极具实用价值的作图软件--ps,由于正版价格昂贵,所以这里分享破解版的资源.b话少说,下面是下载链接和安装步骤: 下载链接: 百度网盘链接:https://pan.baidu.com/s/1XPf ...
- Spring Boot Scheduled定时任务特性
SpringBoot中的Scheduled定时任务是Spring Boot中非常常用的特性,用来执行一些比如日切或者日终对账这种定时任务 下面说说使用时要注意的Scheduled的几个特性 Sched ...
- 与数论的厮守05:gcd(a,b)=gcd(b,a mod b)的证明
\[设c=gcd(a,b),那么a可以表示为mc,b可以表示为nc的形式.然后令a=kb+r,那么我们就\\ 只需要证明gcd(b,r)=c即可.{\because}r=a-kb=mc-knc,{\t ...
- 入门OJ:简单的网络游戏
题目描述 在某款极具技术含量的网络游戏中,佳佳靠着他的聪明智慧垄断了游戏中的油田系统.油田里有许多油井,这些油井排成一个M*N的矩形.每个油井都有一个固定的采油量.每两个相邻的油井之间有一条公路,这些 ...
- MySQL中UPDATE语句里SET后使用AND的执行过程和结果分析
使用SQL中的UPDATE关键字更新多个字段值时,SET后面的更新字段应该使用逗号而不能用AND.虽然用AND不会报错,但会使更新结果错误,下面我将通过场景来分析当我们使用AND时SQL的执行过程和为 ...
- FLask的偏函数应用
偏函数 实际上,偏函数主要辅助原函数,作用其实和原函数差不多,不同的是,我们要多次调用原函数的时候,有些参数,我们需要多次手动的去提供值.而偏函数便可简化这些操作,减少函数调用,主要是将一个或多个参数 ...
- Any race is a bug. When there is a race, the compiler is free to do whatever it wants.
https://mp.weixin.qq.com/s/pVJiFdDDKVx707eKL19bjA 谈谈 Golang 中的 Data Race 原创 ms2008 poslua 2019-05-13 ...