为什么可以这样拆点在 这道题 都已经证明过

代码:

  1 //题目上面说了“The only exception is that the first and the last city should be the same and this city is visited twice.”
2 //我还以为是起点要使用两次,没想到题意就是全部点连接之后出入度都为1
3
4 //题意:有n座城市,m条带权有向边。有人想要游历所有城市,于是制定了计划:游历的路径是一个或者多个环,且所有城市都必须仅存在于一个环中。问怎样设计路线使得总路程最短?
5 //我们可以用最大权匹配去求:
6 //1.对于每个点u,我们拆成u和u'。u代表着出点,在二分图的左侧;u'代表着入点,在二分图的右侧。
7 //2.如果有一条有向边u-->v,那么在二分图中,我们加一条边u-->v',并且权值取反。
8 //
9 //3.利用KM()算法,求出最大权匹配,再将结果取反,即为答案。
10 // 举个三个点的例子
11 // p->q`->q->r`->r->p`
12 //
13 //问:为何KM()算法求出来的就一定是一个或多个环呢?
14 //1.可知,题目已经说明了必定有解。那么对应的二分图必定存在完全匹配,完全匹配也必定是最大匹配。
15 //2.我们用KM()算法求出了最大权匹配。根据性质:最大权匹配必定为最大匹配。所以,如果最大匹配是完全匹配,那么最大权匹配也是完全匹配。
16 //3.因为最大权匹配是完全匹配。所以所求出的解必定是一个或多个环。
17 #include<stdio.h>
18 #include<algorithm>
19 #include<string.h>
20 #include<iostream>
21 #include<queue>
22 #include<vector>
23 using namespace std;
24 const int maxn=510;
25 const int INF=0x3f3f3f3f;
26 int n,m;
27 int g[maxn][maxn],link[maxn],matchx[maxn],matchy[maxn];
28 int slack[maxn],visitx[maxn],visity[maxn];
29 int dfs(int x)
30 {
31 visitx[x]=1;
32 for(int i=1;i<=n;++i)
33 {
34 if(visity[i]) continue;
35 int temp=matchx[x]+matchy[i]-g[x][i];
36 if(temp==0)
37 {
38 visity[i]=1;
39 if(link[i]==-1 || dfs(link[i]))
40 {
41 link[i]=x;
42 return 1;
43 }
44 }
45 else slack[i]=min(slack[i],temp);
46 }
47 return 0;
48 }
49 int km()
50 {
51 memset(link,-1,sizeof(link));
52 memset(matchy,0,sizeof(matchy));
53 for(int i=1;i<=n;++i)
54 {
55 matchx[i]=-INF;
56 for(int j=1;j<=n;++j)
57 {
58 matchx[i]=max(matchx[i],g[i][j]);
59 }
60 }
61 for(int x=1;x<=n;++x)
62 {
63 for(int i=1;i<=n;++i)
64 slack[i]=INF;
65 while(1)
66 {
67 memset(visitx,0,sizeof(visitx));
68 memset(visity,0,sizeof(visity));
69 if(dfs(x)) break;
70 int d=INF;
71 for(int i=1;i<=n;++i)
72 if(!visity[i])
73 d=min(d,slack[i]);
74 for(int i=1;i<=n;++i)
75 {
76 if(visitx[i])
77 matchx[i]-=d;
78 }
79 for(int i=1;i<=n;++i)
80 {
81 if(visity[i]) matchy[i]+=d;
82 else slack[i]-=d;
83 }
84 }
85 }
86 int ans=0;
87 for(int i=1;i<=n;++i)
88 {
89 if(link[i]!=-1)
90 ans+=g[link[i]][i];
91 }
92 return ans;
93 }
94 int main()
95 {
96 int t;
97 scanf("%d",&t);
98 while(t--)
99 {
100 scanf("%d%d",&n,&m);
101 memset(g,0,sizeof(g));
102 for(int i=1;i<=n;++i)
103 {
104 for(int j=1;j<=n;++j)
105 {
106 g[i][j]=-INF;
107 }
108 }
109 while(m--)
110 {
111 int u,v,w;
112 scanf("%d%d%d",&u,&v,&w);
113 g[u][v]=max(-w,g[u][v]);
114 }
115 printf("%d\n",-km());
116 }
117 return 0;
118 }

HDU 3488-Tour KM的更多相关文章

  1. Hdu 3488 Tour (KM 有向环覆盖)

    题目链接: Hdu 3488 Tour 题目描述: 有n个节点,m条有权单向路,要求用一个或者多个环覆盖所有的节点.每个节点只能出现在一个环中,每个环中至少有两个节点.问最小边权花费为多少? 解题思路 ...

  2. 图论(二分图,KM算法):HDU 3488 Tour

    Tour Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Submis ...

  3. HDU 3488 Tour (最大权完美匹配)【KM算法】

    <题目链接> 题目大意:给出n个点m条单向边边以及经过每条边的费用,让你求出走过一个哈密顿环(除起点外,每个点只能走一次)的最小费用.题目保证至少存在一个环满足条件. 解题分析: 因为要求 ...

  4. HDU - 3488 Tour (KM最优匹配)

    题意:对一个带权有向图,将所有点纳入一个或多个环中,且每个点只出现一次,求其所有环的路径之和最小值. 分析:每个点都只出现一次,那么换个思路想,每个点入度出度都为1.将一个点拆成两个点,一个作为入度点 ...

  5. hdu 3488 Tour

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3488 题意:给你一个N个顶点M条边的带权有向图,要你把该图分成1个或多个不相交的有向环.且所有定点都只 ...

  6. HDU 3488 Tour(最小费用流:有向环最小权值覆盖)

    http://acm.hdu.edu.cn/showproblem.php?pid=3488 题意: 给出n个点和m条边,每条边有距离,把这n个点分成1个或多个环,且每个点只能在一个环中,保证有解. ...

  7. HDU 3488 KM Tour

    参考题解 这题注意有重边.. #include <cstdio> #include <cstring> #include <algorithm> using nam ...

  8. Tour HDU - 3488 有向环最小权值覆盖 费用流

    http://acm.hdu.edu.cn/showproblem.php?pid=3488 给一个无源汇的,带有边权的有向图 让你找出一个最小的哈密顿回路 可以用KM算法写,但是费用流也行 思路 1 ...

  9. hdu 3488(KM算法||最小费用最大流)

    Tour Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Submis ...

  10. Tour HDU - 3488(最大权值匹配)

    Tour In the kingdom of Henryy, there are N (2 <= N <= 200) cities, with M (M <= 30000) one- ...

随机推荐

  1. python_字典(dict)

    dict 一.结构: info = { "key":"value", "key":"value" } print(inf ...

  2. 【RAC】oracle11g r2 rac环境删除节点步骤

    1.移除数据库实例 如果节点运行了service首先需要删除service使用dbca图形化界面删除节点依次选择 Real Application Clusters -- > Instance ...

  3. C/C++内存对齐详解

    1.什么是内存对齐 还是用一个例子带出这个问题,看下面的小程序,理论上,32位系统下,int占4byte,char占一个byte,那么将它们放到一个结构体中应该占4+1=5byte:但是实际上,通过运 ...

  4. 计网Q1:多个方面比较电路交换、报文交换和分组交换的主要优缺点

    网上看到的带佬儿的帖子......膜过来<doge 原文链接: https://blog.csdn.net/njchenyi/article/details/1540657 电路交换: 由于电路 ...

  5. buuctf—web—高明的黑客

    打开靶机,看到如下界面 于是打开www.tar.gz 下载后发现是一个放有大量php文件的文件夹 看了大佬的wp后明白了是fuzzing 附上大佬的脚本 import os import re imp ...

  6. IE浏览器直接在页面中显示7z文件而不是下载问题解决

    IE浏览器中输入7z文件的完整下载URL后,不是保存文件,而是直接在页面中显示(当然是乱码) 这是因为浏览器对不同的资源文件处理的方式不同,例如图片文件,一般会直接打开,所以我们可以不用7z,使用zi ...

  7. 三种梯度下降算法的区别(BGD, SGD, MBGD)

    前言 我们在训练网络的时候经常会设置 batch_size,这个 batch_size 究竟是做什么用的,一万张图的数据集,应该设置为多大呢,设置为 1.10.100 或者是 10000 究竟有什么区 ...

  8. [Noip模拟题]Seq

    题目描述 由于hyf长得实在是太帅了,英俊潇洒,风流倜傥,人见人爱,花见花开,车见车载.有一群MM排队看hyf.每个MM都有自己独特的风格,由于hyf有着一颗包容的心,所以,什么风格的MM他都喜欢-- ...

  9. 面试官:你说说ReentrantLock和Synchronized区别

    大家好!又和大家见面了.为了避免面试尴尬,今天同比较通俗语言和大家聊下ReentrantLock和Synchronized区别! 使用方式 Synchronized可以修饰实例方法,静态方法,代码块. ...

  10. 【链表】leetcode-1290-二进制链表转整数

    leetcode-1290-二进制链表转整数 题目描述 给你一个单链表的引用结点 head.链表中每个结点的值不是 0 就是 1.已知此链表是一个整数数字的二进制表示形式. 请你返回该链表所表示数字的 ...