Problem Description
Teacher Mai is in a maze with n rows
and m columns.
There is a non-negative number in each cell. Teacher Mai wants to walk from the top left corner (1,1) to
the bottom right corner (n,m).
He can choose one direction and walk to this adjacent cell. However, he can't go out of the maze, and he can't visit a cell more than once.

Teacher Mai wants to maximize the sum of numbers in his path. And you need to print this path.
 

Input
There are multiple test cases.

For each test case, the first line contains two numbers n,m(1≤n,m≤100,n∗m≥2).

In following n lines,
each line contains m numbers.
The j-th
number in the i-th
line means the number in the cell (i,j).
Every number in the cell is not more than 104.
 

Output
For each test case, in the first line, you should print the maximum sum.

In the next line you should print a string consisting of "L","R","U" and "D", which represents the path you find. If you are in the cell (x,y),
"L" means you walk to cell (x,y−1),
"R" means you walk to cell (x,y+1),
"U" means you walk to cell (x−1,y),
"D" means you walk to cell (x+1,y).
 

Sample Input

3 3
2 3 3
3 3 3
3 3 2
 

Sample Output

25
RRDLLDRR

第一想法是搜多,但看到100*100的大小,感觉不是搜索题,后来发现是模拟题。如果n或m有一个是奇数,那么一定可以把所有的点都走一遍,这样结果一定是最大的,所以只要考虑都是偶数的情况。我的思路是先把横纵坐标只和为奇数的染成黑色,偶数的染成白色,那么画图可以知道

如果选择一个黑色方格不走,那么其他点都能够走一遍,但如果选择一个白色方格不走,必须要不走另外两个黑色方格才能走到终点,所以 一定是选择最小的黑色方格数不走。

然后选出最小的黑色方格,然后模拟一下走法就行了。

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
#define inf 99999999
int gra[106][106],n,m,sum;
void jishulu()
{
int i,j;
printf("%d\n",sum);
if(n%2==1){
for(i=1;i<=n;i++){
for(j=1;j<=m-1;j++){
printf("%c",i%2==1?'R':'L');
}
if(i<n)printf("D");
else printf("\n");
}
}
else{
for(j=1;j<=m;j++){
for(i=1;i<=n-1;i++){
printf("%c",j%2==1?'D':'U');
}
if(j<m)printf("R");
else printf("\n");
}
}
} void oushulu()
{
int i,j,minx=inf,dx=0,dy=0,x,y;
for(i=1;i<=n;i++){
for(j=1;j<=m;j++){
if((i+j)%2==1 && minx>gra[i][j]){
dx=i;dy=j;minx=gra[i][j];
}
}
}
printf("%d\n",sum-minx);
if(dx==n){
for(i=1;i<=n-2;i++){
for(j=1;j<=m-1;j++){
printf("%c",i%2==1?'R':'L');
}
printf("D");
}
if(dy==1){
x=n-1;y=1;
while(1)
{
printf("RD");x++;y++;
if(x==n && y==m){
printf("\n");break;
}
printf("RU");x--;y++;
}
}
else{
printf("D");
x=n;y=1;
while(1)
{
printf("RU");
x--;y++;
if(x+1==dx && y+1==dy){
printf("RRD");x++;y+=2;
}
else{
printf("RD");x++;y++;
}
if(x==n && y==m){
printf("\n");break;
}
}
}
}
else if(dx!=n){
for(i=1;i<=dx-1;i++){
for(j=1;j<=m-1;j++){
printf("%c",i%2==1?'R':'L');
}
printf("D");
}
if(dx%2==1){
printf("D");
x=dx+1;y=1;
if(dy==m){
while(1)
{
if((y+1)!=m){
printf("RURD");y+=2;
}
else{
printf("R");y++;
if(x!=n)printf("D");break;
}
}
}
else{
while(1)
{
if(x-1==dx && y+1==dy){
printf("RRURD");y+=3;
}
else{
printf("RURD");y+=2;
}
if(y==m){
if(x!=n)printf("D");
break;
}
}
}
for(i=dx+2;i<=n;i++){
for(j=1;j<=m-1;j++){
printf("%c",i%2==1?'L':'R');
}
if(i!=n)printf("D");
}
printf("\n"); }
else if(dx%2==0){
printf("D");
x=dx+1;y=m;
if(dy==1){
while(1)
{
if((y-1)!=1){
printf("LULD");y-=2;
}
else{
printf("L");y--;
if(x!=n)printf("D");
break;
}
}
}
else{
while(1)
{
if(x-1==dx && y-1==dy){
printf("LLULD");y-=3;
}
else{
printf("LULD");y-=2;
}
if(y==1){
if(x!=n)printf("D");
break;
}
}
}
if(x!=n){
for(i=dx+2;i<=n;i++){
for(j=1;j<=m-1;j++){
printf("%c",i%2==1?'L':'R');
}
if(i!=n)
printf("D");
}
}
printf("\n"); }
}
} int main()
{
int i,j;
while(scanf("%d%d",&n,&m)!=EOF)
{
sum=0;
for(i=1;i<=n;i++){
for(j=1;j<=m;j++){
scanf("%d",&gra[i][j]);
sum+=gra[i][j];
}
}
if(n%2==1 || m%2==1){
jishulu();
}
else oushulu();
}
return 0;
}

hdu5402 Travelling Salesman Problem的更多相关文章

  1. [hdu5402 Travelling Salesman Problem]YY

    题意:给一个n*m的矩形,每个格子有一个非负数,求一条从(1,1)到(n,m)的路径(不能经过重复的格子),使得经过的数的和最大,输出具体的方案 思路:对于row为奇数的情况,一行行扫下来即可全部走完 ...

  2. PAT A1150 Travelling Salesman Problem (25 分)——图的遍历

    The "travelling salesman problem" asks the following question: "Given a list of citie ...

  3. PAT 甲级 1150 Travelling Salesman Problem

    https://pintia.cn/problem-sets/994805342720868352/problems/1038430013544464384 The "travelling ...

  4. 构造 - HDU 5402 Travelling Salesman Problem

    Travelling Salesman Problem Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=5402 Mean: 现有一 ...

  5. 1150 Travelling Salesman Problem(25 分)

    The "travelling salesman problem" asks the following question: "Given a list of citie ...

  6. HDU 5402 Travelling Salesman Problem (构造)(好题)

    大致题意:n*m的非负数矩阵,从(1,1) 仅仅能向四面走,一直走到(n,m)为终点.路径的权就是数的和.输出一条权值最大的路径方案 思路:因为这是非负数,要是有负数就是神题了,要是n,m中有一个是奇 ...

  7. HDOJ 5402 Travelling Salesman Problem 模拟

    行数或列数为奇数就能够所有走完. 行数和列数都是偶数,能够选择空出一个(x+y)为奇数的点. 假设要空出一个(x+y)为偶数的点,则必须空出其它(x+y)为奇数的点 Travelling Salesm ...

  8. PAT_A1150#Travelling Salesman Problem

    Source: PAT A1150 Travelling Salesman Problem (25 分) Description: The "travelling salesman prob ...

  9. HDU 5402 Travelling Salesman Problem (模拟 有规律)(左上角到右下角路径权值最大,输出路径)

    Travelling Salesman Problem Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (J ...

随机推荐

  1. SQL注入-流程

    一般注入分类: 时间,布尔,报错,堆,联合 有关函数介绍: current_user() 当前用户名 session_user() 链接数据库的用户名 @@basedir mysql安装路径 @@da ...

  2. 【项目实践】手把手带你搞定SSM

    以项目驱动学习,以实践检验真知 前言 现在使用Java后端开发使用的技术栈基本上比较统一:Spring + SpringMVC + Mybatis,即大家常说的SSM.虽然现在流行的做法是使用Spri ...

  3. 【Linux】在文件的指定位置插入数据

    今天遇到一个似乎很棘手的问题,要在文件的中间,插入几条配置 这里就以my.cnf这个文件为例 1 [mysqld] 2 datadir=/var/lib/mysql 3 socket=/var/lib ...

  4. 【CRS】vipca最后一步执行报错CRS-0215

    当我们在安装Clusterware 的时候, 需要在第二节点上vipca , 配置到最后安装的时候, 安装到 75% 左右,报错:     CRS-0215 : Could not start res ...

  5. merge join pg伪代码

    Join { get initial outer and inner tuples INITIALIZE do forever { while (outer != inner) { SKIP_TEST ...

  6. Docker安装配置及华为云镜像加速

    Docker华为云镜像加速 软件介绍 支持的操作系统 docker安装 docker镜像加速(华为云实现) 1.登录华为云网站,注册华为云账户 2.登录华为云账户,点击网页右上角的控制台 3.点击左上 ...

  7. ant design vue 地区选择(级联)

    city.js const options = [ { value:'北京市', label:'北京市', children:[ { value:'北京市', label:'北京市', childre ...

  8. has been blocked by CORS policy: Response to preflight request doesn't pass access control check: No 'Access-Control-Allow-Origin' header is present on the requested resource.

    前端显示: has been blocked by CORS policy: Response to preflight request doesn't pass access control che ...

  9. (Oracle)看懂Oracle执行计划(转载)

    最近一直在跟Oracle打交道,从最初的一脸懵逼到现在的略有所知,也来总结一下自己最近所学,不定时更新ing- 一:什么是Oracle执行计划? 执行计划是一条查询语句在Oracle中的执行过程或访问 ...

  10. etcd 性能优化实践

    https://mp.weixin.qq.com/s/lD2b-DZyvRJ3qWqmlvHpxg 从零开始入门 K8s | etcd 性能优化实践 原创 陈星宇 阿里巴巴云原生 2019-12-16 ...