【AHOI2009】中国象棋 题解(线性DP+数学)
前言:这题主要是要会设状态,状态找对了问题迎刃而解。
---------------------------
题目描述
这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法。大家肯定很清楚,在中国象棋中炮的行走方式是:一个炮攻击到另一个炮,当且仅当它们在同一行或同一列中,且它们之间恰好 有一个棋子。你也来和小可可一起锻炼一下思维吧!
输入格式
一行包含两个整数N,M,之间由一个空格隔开。
输出格式
总共的方案数,由于该值可能很大,只需给出方案数模9999973的结果。
数据范围
100%的数据中N和M均不超过100
50%的数据中N和M至少有一个数不超过8
30%的数据中N和M均不超过6
----------------------------------------------
设$f[i][j][k]$表示前$i$行中有$j$列放$1$个棋子,有$k$列放两个棋子的方案数。
自然而然考虑三种情况:
1.这一行不放棋子:$f[i][j][k]=f[i-1][j][k]$
2.这一行放一个棋子:
(1)选择在没有棋子的一列放一个棋子:$f[i][j][k]+=f[i][j-1][k]*(m-(j-1)-k)$
(2)选择在有$1$个棋子的一列放一个棋子:$f[i][j][k]+=f[i-1][j+1][k-1]*(j+1)$
3.这一行放两个棋子:
(1)$1$个棋子放在有$1$个棋子的一列,$1$个棋子放在没有棋子的一列:$f[i][j][k]+=f[i-1][j][k-1]*j*(m-j-(k-1))$(拥有$1$个棋子的列数是不变的(-1+1),拥有$2$个棋子的列数+1)
(2)$2$个棋子都放在有$1$个棋子的列上:$f[i][j][k]+=f[i-1][j+2][k-2]*C_{j+2}^2$
(3)$2$个棋子都放在没有棋子的列上:$f[i][j][k]+=f[i-1][j-2][k]*C_{m-(j-2)-k}^2$
写的时候考虑边界,最好开$long \ long$。
代码:
#include<bits/stdc++.h>
#define int long long
using namespace std;
const int mod=;
int f[][][],n,m,ans;
int C(int a)
{
return (a*(a-)/)%mod;
}
signed main()
{
scanf("%d%d",&n,&m);
f[][][]=;
for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
for (int k=;k<=m-j;k++)
{
f[i][j][k]=f[i-][j][k];
if(k>=)(f[i][j][k]+=f[i-][j+][k-]*(j+));
if(j>=)(f[i][j][k]+=f[i-][j-][k]*(m-j-k+));
if(k>=)(f[i][j][k]+=f[i-][j+][k-]*(((j+)*(j+))/));
if(k>=)(f[i][j][k]+=f[i-][j][k-]*j*(m-j-k+));
if(j>=)(f[i][j][k]+=f[i-][j-][k]*C(m-j-k+));
f[i][j][k]%=mod;
}
for (int i=;i<=m;i++)
for (int j=;j<=m;j++) ans=(ans+f[n][i][j])%mod;
printf("%lld",(ans+mod)%mod);
return ;
}
【AHOI2009】中国象棋 题解(线性DP+数学)的更多相关文章
- BZOJ1801:[AHOI2009]中国象棋——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=1801 https://www.luogu.org/problemnew/show/P2051 这次小 ...
- 洛谷P2051 [AHOI2009] 中国象棋(状压dp)
题目简介 n*m的棋盘,对每行放炮,要求每行每列炮数<=2,求方案数%9999973 N,M<=100 题目分析 算法考虑 考虑到N,M范围较小,每一行状态只与前面的行状态有关,考虑状压D ...
- 洛谷 P2051 [AHOI2009]中国象棋 状态压缩思想DP
P2051 [AHOI2009]中国象棋 题意: 给定一个n*m的空棋盘,问合法放置任意多个炮有多少种情况.合法放置的意思是棋子炮不会相互打到. 思路: 这道题我们可以发现因为炮是隔一个棋子可以打出去 ...
- Luogu P2051 [AHOI2009]中国象棋(dp)
P2051 [AHOI2009]中国象棋 题面 题目描述 这次小可可想解决的难题和中国象棋有关,在一个 \(N\) 行 \(M\) 列的棋盘上,让你放若干个炮(可以是 \(0\) 个),使得没有一个炮 ...
- [Luogu P2051] [AHOI2009]中国象棋 (状压DP->网格DP)
题面 传送门:https://www.luogu.org/problemnew/show/P2051 Solution 看到这题,我们不妨先看一下数据范围 30pt:n,m<=6 显然搜索,直接 ...
- 洛谷 P2051 [AHOI2009]中国象棋 解题报告
P2051 [AHOI2009]中国象棋 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法. ...
- [洛谷P2051] [AHOI2009]中国象棋
洛谷题目链接:[AHOI2009]中国象棋 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法 ...
- luogu 2051 [AHOI2009]中国象棋
luogu 2051 [AHOI2009]中国象棋 真是一道令人愉♂悦丧心并框的好题... 首先"没有一个炮可以攻击到另一个炮"有个充分条件就是没有三个炮在同一行或同一列.证明:显 ...
- [P2051 [AHOI2009]中国象棋] DP
https://www.luogu.org/problemnew/show/P2051 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一 ...
随机推荐
- Linux超强截图工具flameshot
Pop!_OS自带的截屏快捷键如下 但讲道理这个是真的不好用 所以我们借助第三方的截图工具,这里推荐flameshot(火焰截图) 在终端键入以下命令即可安装 sudo apt update sudo ...
- shell专题(三):Shell脚本入门
1.脚本格式 脚本以#!/bin/bash开头(指定解析器) 2.第一个Shell脚本:helloworld (1)需求:创建一个Shell脚本,输出helloworld (2)案例实操: [atgu ...
- java 面向对象(十二):面向对象的特征二:继承性 (一) 前言
1.为什么要有类的继承性?(继承性的好处) * ① 减少了代码的冗余,提高了代码的复用性 * ② 便于功能的扩展 * ③ 为之后多态性的使用,提供了前提图示: 2.继承性的格式:class A ext ...
- redis(二):Redis 命令
Redis 命令用于在 redis 服务上执行操作. 要在 redis 服务上执行命令需要一个 redis 客户端.Redis 客户端在我们之前下载的的 redis 的安装包中. 语法 Redis 客 ...
- Python函数07/有参装饰器/多个装饰器装饰一个函数
Python函数07/有参装饰器/多个装饰器装饰一个函数 目录 Python函数07/有参装饰器/多个装饰器装饰一个函数 内容大纲 1.有参装饰器 2.多个装饰器装饰一个函数 3.今日总结 3.今日练 ...
- Spring Boot整合swagger使用教程
目录 Swagger的介绍 优点与缺点 添加swagger 1.添加依赖包: 2.配置Swagger: 3.测试 场景: 定义接口组 定义接口 定义接口请求参数 场景一:请求参数是实体类. 场景二:请 ...
- typedef struct 指针结构体使用方法
A>>>>>>>>>>>>>>>>>>>>>>>> ty ...
- Python Ethical Hacking - BACKDOORS(2)
Refactoring - Creating a Listener Class #!/usr/bin/env python import socket class Listener: def __in ...
- .clearfix 清除浮动,@import
我们知道,在网页的DIV+CSS布局中,很多时候要用到浮动. 既然有浮动,那就有清除浮动. 清除浮动有很多种方式,而在实际项目中,比较常用的是这一种. .clearfix:after { conten ...
- k8s教程:Kubernetes集群使用网络存储NFS
NFS存储 NFS即网络文件系统Network File System,它是一种分布式文件系统协议,最初是由Sun MicroSystems公司开发的类Unix操作系统之上的一款经典网络存储方案,其功 ...