前言:这题主要是要会设状态,状态找对了问题迎刃而解。

---------------------------

题目描述

这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法。大家肯定很清楚,在中国象棋中炮的行走方式是:一个炮攻击到另一个炮,当且仅当它们在同一行或同一列中,且它们之间恰好 有一个棋子。你也来和小可可一起锻炼一下思维吧!

输入格式

一行包含两个整数N,M,之间由一个空格隔开。

输出格式

总共的方案数,由于该值可能很大,只需给出方案数模9999973的结果。

数据范围

100%的数据中N和M均不超过100

50%的数据中N和M至少有一个数不超过8

30%的数据中N和M均不超过6

----------------------------------------------

设$f[i][j][k]$表示前$i$行中有$j$列放$1$个棋子,有$k$列放两个棋子的方案数。

自然而然考虑三种情况:

1.这一行不放棋子:$f[i][j][k]=f[i-1][j][k]$

2.这一行放一个棋子:

(1)选择在没有棋子的一列放一个棋子:$f[i][j][k]+=f[i][j-1][k]*(m-(j-1)-k)$

(2)选择在有$1$个棋子的一列放一个棋子:$f[i][j][k]+=f[i-1][j+1][k-1]*(j+1)$

3.这一行放两个棋子:

(1)$1$个棋子放在有$1$个棋子的一列,$1$个棋子放在没有棋子的一列:$f[i][j][k]+=f[i-1][j][k-1]*j*(m-j-(k-1))$(拥有$1$个棋子的列数是不变的(-1+1),拥有$2$个棋子的列数+1)

(2)$2$个棋子都放在有$1$个棋子的列上:$f[i][j][k]+=f[i-1][j+2][k-2]*C_{j+2}^2$

(3)$2$个棋子都放在没有棋子的列上:$f[i][j][k]+=f[i-1][j-2][k]*C_{m-(j-2)-k}^2$

写的时候考虑边界,最好开$long \ long$。

代码:

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int mod=;
int f[][][],n,m,ans;
int C(int a)
{
return (a*(a-)/)%mod;
}
signed main()
{
scanf("%d%d",&n,&m);
f[][][]=;
for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
for (int k=;k<=m-j;k++)
{
f[i][j][k]=f[i-][j][k];
if(k>=)(f[i][j][k]+=f[i-][j+][k-]*(j+));
if(j>=)(f[i][j][k]+=f[i-][j-][k]*(m-j-k+));
if(k>=)(f[i][j][k]+=f[i-][j+][k-]*(((j+)*(j+))/));
if(k>=)(f[i][j][k]+=f[i-][j][k-]*j*(m-j-k+));
if(j>=)(f[i][j][k]+=f[i-][j-][k]*C(m-j-k+));
f[i][j][k]%=mod;
}
for (int i=;i<=m;i++)
for (int j=;j<=m;j++) ans=(ans+f[n][i][j])%mod;
printf("%lld",(ans+mod)%mod);
return ;
}

【AHOI2009】中国象棋 题解(线性DP+数学)的更多相关文章

  1. BZOJ1801:[AHOI2009]中国象棋——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=1801 https://www.luogu.org/problemnew/show/P2051 这次小 ...

  2. 洛谷P2051 [AHOI2009] 中国象棋(状压dp)

    题目简介 n*m的棋盘,对每行放炮,要求每行每列炮数<=2,求方案数%9999973 N,M<=100 题目分析 算法考虑 考虑到N,M范围较小,每一行状态只与前面的行状态有关,考虑状压D ...

  3. 洛谷 P2051 [AHOI2009]中国象棋 状态压缩思想DP

    P2051 [AHOI2009]中国象棋 题意: 给定一个n*m的空棋盘,问合法放置任意多个炮有多少种情况.合法放置的意思是棋子炮不会相互打到. 思路: 这道题我们可以发现因为炮是隔一个棋子可以打出去 ...

  4. Luogu P2051 [AHOI2009]中国象棋(dp)

    P2051 [AHOI2009]中国象棋 题面 题目描述 这次小可可想解决的难题和中国象棋有关,在一个 \(N\) 行 \(M\) 列的棋盘上,让你放若干个炮(可以是 \(0\) 个),使得没有一个炮 ...

  5. [Luogu P2051] [AHOI2009]中国象棋 (状压DP->网格DP)

    题面 传送门:https://www.luogu.org/problemnew/show/P2051 Solution 看到这题,我们不妨先看一下数据范围 30pt:n,m<=6 显然搜索,直接 ...

  6. 洛谷 P2051 [AHOI2009]中国象棋 解题报告

    P2051 [AHOI2009]中国象棋 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法. ...

  7. [洛谷P2051] [AHOI2009]中国象棋

    洛谷题目链接:[AHOI2009]中国象棋 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法 ...

  8. luogu 2051 [AHOI2009]中国象棋

    luogu 2051 [AHOI2009]中国象棋 真是一道令人愉♂悦丧心并框的好题... 首先"没有一个炮可以攻击到另一个炮"有个充分条件就是没有三个炮在同一行或同一列.证明:显 ...

  9. [P2051 [AHOI2009]中国象棋] DP

    https://www.luogu.org/problemnew/show/P2051 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一 ...

随机推荐

  1. 配置类需要标注@Configuration却不知原因?那这次就不能给你涨薪喽

    专注Java领域分享.成长,拒绝浅尝辄止.关注公众号[BAT的乌托邦]开启专栏式学习,拒绝浅尝辄止.本文 https://www.yourbatman.cn 已收录,里面一并有Spring技术栈.My ...

  2. 华为交换机如何配置SSH远程登录,一分钟秒学会

    从事网络运维工作的小伙伴们都知道,在交换机正式上线时,必须完成配置SSH远程登录,这样做目的是为了日后,维护方便,不需要每次登录设备都要跑到机房,这样既不现实,又费事. 远程登录方式 目前网络设备中主 ...

  3. CSS(二)- 属性速览(含版本、继承性和简介)

    相关链接 CSS3速查表,这里面列出了所有新增的属性以及新增或者修改的属性值 css参考手册,很好地一个常用网站 CSS定位(不可继承) CSS布局(仅visibility可继承) CSS尺寸(不可继 ...

  4. WPF之Converter

    1.Converter介绍 在WPF应用程序中经常遇到类似这样的问题,在定义的类中用的bool类型的值,但是界面上某个控件的显示属性是Visibility的枚举类型的,解决这个问题可以简单在定义的类中 ...

  5. DEX文件解析--3、dex文件字符串解析

    一.前言    前两篇文章链接:     1.DEX文件头解析     2.DEX文件校验和解析    PS:前几天检查文件夹的时候发现DEX文件解析还只写了开头,正好找点事情来做,就去接着解析DEX ...

  6. OSCP Learning Notes - Exploit(1)

    Gaining Root with Metasploit Platform: Kali Linux, Kioptrix Level 1 1. Find the IP of Kioptirx nmap ...

  7. 记录一次升级ant-design-vue的遇见的bug

    记录一次升级ant-design-vue的遇见的bug 使用版本: "version": "2.5.2" "ant-design-vue": ...

  8. 最全JavaScript基础总结

    JavaScript介绍 什么是JavaScript? Javascript是一门面向对象的,跨平台的脚本语言. JavaScript有什么特点? 解释性脚本语言 运行在浏览器(浏览器内核带有js解释 ...

  9. 完美解决pycharm 不显示代码提示问题

    pycharm 不显示代码提示 1.检查IDE省电模式是否关闭状态!!! file → power save mode 取消掉 2.检查代码提示是否成功开启. setting → Inspection ...

  10. python-元类和使用元类实现简单的ORM

    元类 面向对象中,对象是类的实例,即对象是通过类创建出来的,在python中,一切皆对象,同样,类也是一个对象,叫做类对象,只是这个类对象拥有创建其子对象(实例对象)的能力.既然类是对象,那么类是通过 ...