es创建普通索引以及各种查询
创建索引
- 创建普通索引:
PUT /my_index
{
"settings": {
"index": {
"number_of_shards": "5",
"number_of_replicas": "1"
}
}
}
- 查询索引属性
GET /my_index
结果:
{
"my_index": {
"aliases": {},
"mappings": {},
"settings": {
"index": {
"creation_date": "1599903519568",
"number_of_shards": "5", 主分片
"number_of_replicas": "1", 副分片
"uuid": "2WW-BXNxTFafswb0oURYjQ",
"version": {
"created": "5060999"
},
"provided_name": "my_index"
}
}
}
}
- 创建type
PUT /my_index/my_type/_mapping
{
"properties": {
"id":{
"type": "integer"
},
"name":{
"type": "text"
},
"age":{
"type": "integer"
},
"productID":{
"type": "text"
},
"createtime":{
"type": "date",
"format": "yyyy-MM-dd HH:mm:ss"
}
}
}
- 查看type
GET /my_test/my_type/_mapping
结果:
{
"my_index": {
"mappings": {
"my_type": {
"properties": {
"age": {
"type": "integer"
},
"createtime": {
"type": "date",
"format": "yyyy-MM-dd HH:mm:ss"
},
"id": {
"type": "integer"
},
"name": {
"type": "text"
},
"productID": {
"type": "text"
}
}
}
}
}
}
- 添加数据
PUT /my_index/my_type/_bulk
{ "index": { "_id":1}}
{ "id":1,"name": "张三","age":18,"createtime":"2020-09-01 16:16:16","productID":"XHDK-A-1293-#fJ3"}
{ "index": { "_id": 2}}
{ "id":2,"name": "张四","age":20,"createtime":"2020-08-01 16:16:16","productID":"KDKE-B-9947-#kL5"}
{ "index": { "_id": 3}}
{"id":3, "name": "李四","age":22,"createtime":"2020-09-02 16:16:16","productID":"JODL-X-1937-#pV7"}
-- 没有手动插入映射,因此es会为我们自动创建映射,这就意味着只要是文本就会为我们使用分词器分词。
各种查询
空查询(不推荐)
GET _search 查询所有索引下的数据
GET /my_index/_search 查询my_index索引下的所有数据
GET /my_index/my_type/_search 查询my_index索引下my_type下的所有数据
精确查询
当进行精确值查找时, 我们会使用过滤器(filters)。过滤器很重要,因为它们执行速度非常快,不会计算相关度(直接跳过了整个评分阶段)而且很容易被缓存。我们会在本章后面的过滤器缓存中讨论过滤器的性能优势,不过现在只要记住:请尽可能多的使用过滤式查询。
term查询:
- elasticsearch对这个搜索的词语不做分词,用于精确匹配,比如Id,数值类型的查询。
- 可以用它处理数字(numbers)、布尔值(Booleans)、日期(dates)以及不被分析的文本(text)。
查询数值:
- 使用constant_score查询以非评分模式来执行 term 查询并以一作为统一评分,这样返回的结果的评分全部是1
- 使用constant_score将term转化为过滤器查询
GET /my_index/my_type/_search
{
"query": {
"constant_score": {
"filter": {
"term":{
"age": 20
}
}
}
}
}
结果:
{
"took": 0,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1,
"max_score": 1,
"hits": [
{
"_index": "my_index",
"_type": "my_type",
"_id": "2",
"_score": 1,
"_source": {
"id": 2,
"name": "张四",
"age": 20,
"createtime": "2020-08-01 16:16:16",
"productID": "KDKE-B-9947-#kL5"
}
}
]
}
}
查询文本
本文是怎样分词的?
- 大写字母转为小写字母
- 复数变为单数
- 去掉特殊符号
GET /my_index/my_type/_search
{
"query": {
"constant_score": {
"filter": {
"term":{
"productID": "KDKE-B-9947-#kL5"
}
}
}
}
}
查询结果:
{
"took": 0,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 0,
"max_score": null,
"hits": []
}
}
查询无结果?
由于term是精确查询,但是在查询文本的时候,很有可能这个文本已经进行了分词,但是term查询的时候搜索的词不分词,因此可能两个文本明明是一样的,但是却匹配不上,我们可以使用分词分析器看看这个productID如何实现分词的,如下:
GET /my_index/_analyze
{
"field": "{productID}",
"text": "KDKE-B-9947-#kL5"
}
查询结果:
{
"tokens": [
{
"token": "kdke",
"start_offset": 0,
"end_offset": 4,
"type": "<ALPHANUM>",
"position": 0
},
{
"token": "b",
"start_offset": 5,
"end_offset": 6,
"type": "<ALPHANUM>",
"position": 1
},
{
"token": "9947",
"start_offset": 7,
"end_offset": 11,
"type": "<NUM>",
"position": 2
},
{
"token": "kl5",
"start_offset": 13,
"end_offset": 16,
"type": "<ALPHANUM>",
"position": 3
}
]
}
从上面查询结果来看:
1、将特殊符号-分词时自动去掉了
2、大写字母全部转为小写
解决方案:
如果需要使用term精确匹配查询文本,那么这个文本就不能使用分词器分词,因此需要手动创建索引的映射(mapping),如下:
DELETE my_index 删除索引
PUT /my_index 重新创建索引
{
"settings": {
"index": {
"number_of_shards": "5",
"number_of_replicas": "1"
}
}
}
PUT /my_index/my_type/_mapping
{
"properties": {
"id":{
"type": "integer"
},
"name":{
"type": "text"
},
"age":{
"type": "integer"
},
"productID":{ 重新指定字段索引映射,文本keyword类型是不被分词的
"type": "text",
"fields": {
"keyword":{
"type": "keyword"
}
}
},
"createtime":{
"type": "date",
"format": "yyyy-MM-dd HH:mm:ss"
}
}
}
重新加入数据后就能精确匹配到信息了
GET /my_index/my_type/_search
{
"query": {
"constant_score": {
"filter": {
"term":{
"productID.keyword": "KDKE-B-9947-#kL5"
}
}
}
}
}
terms查询
- 对于多个关键字的查询,假设我们需要查询age在18,20,22中的其中一个即可,那么需要使用terms指定多组值。
- 精确查询,不会使用分词器
GET /my_index/my_type/_search
{
"query": {
"terms": {
"age": [
18,
20,
22
]
}
}
}
指定文档数量(from,size)
- 假设我们需要对前两个文档进行查询,那么可以使用from和size指定文档的数量,如下:
GET /my_index/my_type/_search
{
"from": 0, 从第一个文档
"size": 2, 查询两个文档
"query": {
"terms": {
"age": [
18,
20,
22
]
}
}
}
返回指定字段_source
- 在使用查询的时候默认返回的是全部的字段,那么我们可以使用_source指定返回的字段
GET /my_index/my_type/_search
{
"from": 0,
"size": 2,
"_source": ["id","name","age"],
"query": {
"terms": {
"age": [
18,
20,
22
]
}
}
}
排除不返回的字段exclude
GET /my_index/my_type/_search
{
"from": 0,
"size": 2,
"_source": {
"includes": ["id","name","age"], 返回字段
"excludes":["productID"] 不返回的字段
},
"query": {
"terms": {
"age": [
18,
20,
22
]
}
}
}
match查询
- match查询和term查询相反,知道分词器的存在,会对搜索的词语进行分词。
- 上面使用match查询productId的时候,因为term不知道分词器的存在,因此查询不到,但是我们使用match查询可以匹配到,如下:
GET /my_index/my_type/_search
{
"query": {
"match": {
"productID": "KDKE-B-9947-#kL5"
}
}
}
查询结果:
{
"took": 0,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1,
"max_score": 0.2876821,
"hits": [
{
"_index": "my_index",
"_type": "my_type",
"_id": "2",
"_score": 0.2876821,
"_source": {
"id": 2,
"name": "张四",
"age": 20,
"createtime": "2020-08-01 16:16:16",
"productID": "KDKE-B-9947-#kL5"
}
}
]
}
}
- 比如我们查询姓名为张三的数据
GET /my_index/my_type/_search
{
"query": {
"match": {
"name": "张三" 会对这个短语先进行分词之后再去查询
}
}
}
查询结果:
{
"took": 1,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 2,
"max_score": 0.51623213,
"hits": [
{
"_index": "my_index",
"_type": "my_type",
"_id": "1",
"_score": 0.51623213,
"_source": {
"id": 1,
"name": "张三",
"age": 18,
"createtime": "2020-09-01 16:16:16",
"productID": "XHDK-A-1293-#fJ3"
}
},
{
"_index": "my_index",
"_type": "my_type",
"_id": "2",
"_score": 0.25811607,
"_source": {
"id": 2,
"name": "张四",
"age": 20,
"createtime": "2020-08-01 16:16:16",
"productID": "KDKE-B-9947-#kL5"
}
}
]
}
}
分析:match查询会将查询语句先按标准的分词器分析后,根据分析后的单词去匹配索引。
GET /my_index/_analyze
{
"text": "张三"
}
分词结果:
{
"tokens": [
{
"token": "张",
"start_offset": 0,
"end_offset": 1,
"type": "<IDEOGRAPHIC>",
"position": 0
},
{
"token": "三",
"start_offset": 1,
"end_offset": 2,
"type": "<IDEOGRAPHIC>",
"position": 1
}
]
}
match_phrase(短语匹配)
- 类似 match 查询, match_phrase 查询首先将查询字符串解析成一个词项列表,然后对这些词项进行搜索,但只保留那些包含 全部 搜索词项,且 位置 与搜索词项相同的文档。 比如对于 quick fox 的短语搜索可能不会匹配到任何文档,因为没有文档包含的 quick 词之后紧跟着 fox
- 位置顺序必须一致
GET /my_index/my_type/_search
{
"query": {
"match_phrase": {
"name": "张三"
}
}
}
查询结果:
{
"took": 1,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1,
"max_score": 0.51623213,
"hits": [
{
"_index": "my_index",
"_type": "my_type",
"_id": "1",
"_score": 0.51623213,
"_source": {
"id": 1,
"name": "张三",
"age": 18,
"createtime": "2020-09-01 16:16:16",
"productID": "XHDK-A-1293-#fJ3"
}
}
]
}
}
- 如果觉得短语匹配过于严格,那么也可以设置slop这个关键字指定相隔的距离。
举例:
先添加一个名字为张啊三的数据
PUT /my_index/my_type/_bulk
{ "index": { "_id":4}}
{ "id":4,"name": "张啊三","age":26,"createtime":"2020-10-01 16:16:16","productID":"XHDK-B-1293-#fJ2"}
{ "index": { "_id":5}}
{ "id":5,"name": "张家口测试三","age":26,"createtime":"2020-10-01 16:16:16","productID":"XHDK-B-1293-#fJ2"}
查询:
GET /my_index/my_type/_search
{
"query": {
"match_phrase": {
"name":{
"query": "张三",
"slop":1 设置分词相隔距离
}
}
}
}
查询结果:
{
"took": 0,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 2,
"max_score": 0.51623213,
"hits": [
{
"_index": "my_index",
"_type": "my_type",
"_id": "1",
"_score": 0.51623213,
"_source": {
"id": 1,
"name": "张三",
"age": 18,
"createtime": "2020-09-01 16:16:16",
"productID": "XHDK-A-1293-#fJ3"
}
},
{
"_index": "my_index",
"_type": "my_type",
"_id": "4",
"_score": 0.42991763,
"_source": {
"id": 4,
"name": "张啊三",
"age": 26,
"createtime": "2020-10-01 16:16:16",
"productID": "XHDK-B-1293-#fJ2"
}
}
]
}
}
排序
- 使用sort可以进行排序
GET /my_index/my_type/_search
{
"query": {
"match_all": {}
},
"sort": [
{
"createtime": {
"order": "desc"
},
"age": {
"order": "desc"
}
}
]
}
-- 对于文本排序就比较特殊,不能在analyzed(分析过)的字符串字段上排序,因为分析器将字符串拆分成了很多词汇单元,就像一个 词汇袋 ,所以 Elasticsearch 不知道使用那一个词汇单元排序。所以analyzed 域用来搜索, not_analyzed 域用来排序。但是依赖于 not_analyzed 域来排序的话不是很灵活,也可以[自定义分析器](https://www.elastic.co/guide/cn/elasticsearch/guide/current/sorting-collations.html)进行排序。
GET /my_index/my_type/_search
{
"query": {
"match_all": {}
},
"sort": [
{
"productID.keyword": {
"order": "desc"
}
}
]
}
range(范围查询)
- gt : > 大于(greater than)
- lt : < 小于(less than)
- gte : >= 大于或等于(greater than or equal to)
- lte : <= 小于或等于(less than or equal to)
GET /my_index/my_type/_search
{
"query": {
"range": {
"createtime": {
"lte": "now" 小于等于当前时间
}
}
}
}
GET /my_index/my_type/_search
{
"query": {
"range": {
"createtime": {
"lte": "now-1M" 小于等于当前时间减去一个月
}
}
}
}
y:年、M:月、d:天、h:时、m:分、s:秒
GET /my_index/my_type/_search
{
"query": {
"range": {
"createtime": {
"gte": "2020-10-01 16:16:16", 也可以指定到秒
"lte": "2020-10-01 16:16:16"
}
}
}
}
GET /my_index/my_type/_search
{
"query": {
"range": {
"age": {
"gte": 18, 数值类型
"lte": 20
}
}
}
}
fuzzy(模糊查询)
- fuzzy 查询是一个词项级别的查询,所以它不做任何分析。它通过某个词项以及指定的 fuzziness 查找到词典中所有的词项。 fuzziness 默认设置为 AUTO 。
- Elasticsearch 指定了 fuzziness参数支持对最大编辑距离的配置,默认为2。建议设置为1会得到更好的结果和更好的性能。
GET /my_index/my_type/_search
{
"query": {
"fuzzy": {
"productID": {
"value": "xhdl", 你如果输入的是XHDL是查询不到的,因为查询语句并没有被分词器分析。
"fuzziness": 1
}
}
}
}
null值的查询
- exists这个语句用来查询存在值的信息,如果和must结合表示查询不为null的数据,如果must_not集合表示查询为null的数据,如下
先添加一条订单号为null的数据:
PUT /my_index/my_type/_bulk
{ "index": { "_id":6}}
{ "id":6,"name": "赵六","age":22,"createtime":"2020-10-01 16:16:16"}
查询productID为null的数据:
GET my_index/my_type/_search
{
"query": {
"bool": {
"must_not":{
"exists":{
"field":"productID"
}
}
}
}
}
查询productID不为null的数据:
GET my_index/my_type/_search
{
"query": {
"bool": {
"must":{
"exists":{
"field":"productID"
}
}
}
}
}
filter(过滤查询)
- 缓存,不返回相关性,速度比query快
简单的过滤器
- 使用post_filter
GET /my_index/my_type/_search
{
"post_filter": {
"term": {
"age": 20
}
}
}
使用bool组合过滤器
- must :所有的语句都 必须(must) 匹配,与 AND 等价。
- must_not :所有的语句都 不能(must not) 匹配,与 NOT 等价。
- should:至少有一个语句要匹配,与 OR 等价。
GET /my_index/my_type/_search
{
"query": {
"bool": {
"must_not": [
{}
],
"must": [
{}
],
"should": [
{}
]
}
}
}
-- 根据业务需求选择。
实例:匹配查询张三,并且年龄是18岁的。
GET /my_index/my_type/_search
{
"query": {
"bool": {
"must": [
{
"match": {
"name": "张三"
}
},
{
"term": {
"age": {
"value": 18
}
}
}
]
}
}
}
匹配查询叫张三,年龄在20到30之间并且订单号中不包含kdke的数据。
GET /my_index/my_type/_search
{
"query": {
"bool": {
"must": [
{
"match": {
"name": "张三"
}
},
{
"range": {
"age": {
"gte": 20,
"lte": 30
}
}
}
],
"must_not": [
{
"term": {
"productID": "kdke"
}
}
]
}
}
}
嵌套bool组合过滤查询
GET /my_index/my_type/_search
{
"query": {
"bool": {
"must": [
{
"match": {
"name": "张三"
}
},
{
"range": {
"age": {
"gte": 20,
"lte": 30
}
}
},
{
"bool": {
"should": [
{
"match_phrase":{
"name": "测试"
}
}
]
}
}
]
}
}
}
聚合查询
- 在sql中有许多的聚合函数,那么在Elasticsearch中页存在这些聚合函数,比如sum,avg,count等等
count:数量
GET my_index/my_type/_search
{
"size": 0, 在使用聚合时,默认返回10条数据,可以设置大小,如果不需要可以设置为0
"aggs": {
"count_age": { //自定义返回的字段名称
"value_count": { //count是查询聚合函数的数量
"field": "age" //指定的聚合字段
}
}
}
}
avg: 平均值
GET my_index/my_type/_search
{
"size": 0,
"aggs": {
"avg_age": {
"avg": {
"field": "age"
}
}
}
}
max: 最大值
GET my_index/my_type/_search
{
"size": 0,
"aggs": {
"max_age": {
"max": {
"field": "age"
}
}
}
}
min: 最小值
GET my_index/my_type/_search
{
"size": 0,
"aggs": {
"min_age": {
"min": {
"field": "age"
}
}
}
}
sum: 求和
GET my_index/my_type/_search
{
"size": 0,
"aggs": {
"sum_age": {
"sum": {
"field": "age"
}
}
}
}
stats: 统计聚合,基于文档的某个值,计算出一些统计信息(min、max、sum、count、avg)。
GET my_index/my_type/_search
{
"size": 0,
"aggs": {
"stats_age": {
"stats": {
"field": "age"
}
}
}
}
cardinality:相当于该字段互不相同的值有多少类,输出的是种类数
GET my_index/my_type/_search
{
"size": 0,
"aggs": {
"cardinality_age": {
"cardinality": {
"field": "age"
}
}
}
}
group(分组),使用的是terms
添加数据:
PUT /my_index/my_type/_bulk
{ "index": { "_id":7}}
{ "id":7,"name": "鲜橙多","age":15,"createtime":"2020-07-01 16:16:16","productID":"XHDK-C-1293-#fJ3"}
{ "index": { "_id":8}}
{ "id":8,"name": "果粒橙","age":20,"createtime":"2020-12-01 16:16:16","productID":"KDKH-B-9947-#kL5"}
{ "index": { "_id": 9}}
{"id":9, "name": "可口可乐","age":25,"createtime":"2020-09-02 16:16:16","productID":"JODL-X-1937-#pV7"}
{ "index": { "_id":10}}
{ "id":10,"name": "红牛","age":18,"createtime":"2020-09-10 16:16:16","productID":"XHDF-A-1293-#fJ3"}
{ "index": { "_id":11}}
{ "id":11,"name": "体制能量","age":20,"createtime":"2020-08-01 16:16:16","productID":"KDKE-B-9947-#kL5"}
{ "index": { "_id": 12}}
{"id":12, "name": "芬达","age":22,"createtime":"2020-09-02 16:16:16","productID":"JODL-X-1937-#pV7"}
GET my_index/my_type/_search
{
"size": 0, 返回条数,默认返回10条。
"aggs": {
"age_group": { 自定义返回的聚合桶名称
"terms": {
"field": "age", 分组字段
"size":10 返回分组的数量,默认返回10条
}
}
}
}
查询结果:
{
"took": 4,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 12,
"max_score": 0,
"hits": []
},
"aggregations": {
"age_group": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": 20, 每个桶key
"doc_count": 3 每个桶的文档数量。
},
{
"key": 22,
"doc_count": 3
},
{
"key": 18,
"doc_count": 2
},
{
"key": 26,
"doc_count": 2
},
{
"key": 15,
"doc_count": 1
},
{
"key": 25,
"doc_count": 1
}
]
}
}
}
- 查询年龄18到22随的用户并且按创建时间分组
GET /my_index/my_type/_search
{
"size": 0,
"query": {
"range": {
"age": {
"gte": 18,
"lte": 22
}
}
},
"aggs": {
"group_createtime": {
"terms": {
"field": "createtime.keyword",
"size": 10
}
}
}
}
查询结果:
{
"took": 4,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 8,
"max_score": 0,
"hits": []
},
"aggregations": {
"group_createtime": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "2020-08-01 16:16:16",
"doc_count": 2
},
{
"key": "2020-09-02 16:16:16",
"doc_count": 2
},
{
"key": "2020-09-01 16:16:16",
"doc_count": 1
},
{
"key": "2020-09-10 16:16:16",
"doc_count": 1
},
{
"key": "2020-10-01 16:16:16",
"doc_count": 1
},
{
"key": "2020-12-01 16:16:16",
"doc_count": 1
}
]
}
}
}
- 针对年龄在18到22岁之间的用户按照创建时间分组,并按照分组结果进行正序
GET /my_index/my_type/_search
{
"size": 0,
"query": {
"range": {
"age": {
"gte": 18,
"lte": 22
}
}
},
"aggs": {
"group_createtime": {
"terms": {
"field": "createtime.keyword",
"size": 10,
"order": {
"_term": "asc"
}
}
}
}
}
- 针对年龄在18到22岁之间的用户并按创建时间分组后再按年龄分组结果倒序排,求出年龄平均值
GET /my_index/my_type/_search
{
"size": 0,
"query": {
"range": {
"age": {
"gte": 18,
"lte": 22
}
}
},
"aggs": {
"group_createtime": {
"terms": {
"field": "createtime.keyword",
"size": 10
},
"aggs": {
"group_age": {
"terms": {
"field": "age",
"size": 10,
"order": {
"_term": "desc"
}
}
}
}
},
"avg_age":{
"avg": {
"field": "age"
}
}
}
}
- 针对年龄在18到22岁之间的用户并按创建时间分组后再按照年龄分组,时间分组后再按照每个时间段年龄数量倒序排,求出年龄平均值。
GET /my_index/my_type/_search
{
"size": 0,
"query": {
"range": {
"age": {
"gte": 18,
"lte": 22
}
}
},
"aggs": {
"group_createtime": {
"terms": {
"field": "createtime.keyword",
"size": 10,
"order": {
"terms_age.count": "desc"
}
},
"aggs": {
"terms_age": {
"extended_stats": { 度量计算,可以按照度量排序
"field": "age"
}
},
"group_age": {
"terms": {
"field": "age",
"size": 10
}
}
}
},
"avg_age":{
"avg": {
"field": "age"
}
}
}
}
- 聚合去重
查询用户订单号的数量
GET /my_index/my_type/_search
{
"size": 0,
"aggs": {
"cardinality_productID": {
"cardinality": {
"field": "productID.keyword"
}
}
}
}
结果:
{
"took": 4,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 12, 总数量12个
"max_score": 0,
"hits": []
},
"aggregations": {
"cardinality_productID": {
"value": 7 说明有7种订单号
}
}
}
date_histogram(按时间聚合统计)
- 查询出每月份时间段订单完成数量最多
GET /my_index/my_type/_search
{
"size": 0,
"aggs": {
"date_month": {
"date_histogram": {
"field": "createtime",
"interval": "month"
},
"aggs": {
"cardinality_productID": {
"cardinality": {
"field": "productID.keyword"
}
}
}
}
}
}
结果:
{
"took": 12,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 12,
"max_score": 0,
"hits": []
},
"aggregations": {
"date_month": {
"buckets": [
{
"key_as_string": "2020-07-01 00:00:00",
"key": 1593561600000,
"doc_count": 1,
"cardinality_productID": {
"value": 1
}
},
{
"key_as_string": "2020-08-01 00:00:00",
"key": 1596240000000,
"doc_count": 2,
"cardinality_productID": {
"value": 1
}
},
{
"key_as_string": "2020-09-01 00:00:00",
"key": 1598918400000,
"doc_count": 5,
"cardinality_productID": {
"value": 3
}
},
{
"key_as_string": "2020-10-01 00:00:00",
"key": 1601510400000,
"doc_count": 3,
"cardinality_productID": {
"value": 1
}
},
{
"key_as_string": "2020-11-01 00:00:00",
"key": 1604188800000,
"doc_count": 0,
"cardinality_productID": {
"value": 0
}
},
{
"key_as_string": "2020-12-01 00:00:00",
"key": 1606780800000,
"doc_count": 1,
"cardinality_productID": {
"value": 1
}
}
]
}
}
}
- 但是我们想要查看2020年每月份所有订单数量,没有订单的月份返回0
GET /my_index/my_type/_search
{
"size": 0,
"aggs": {
"date_month": {
"date_histogram": {
"field": "createtime",
"interval": "month",
"format":"yyyy-MM", 日期格式化
"min_doc_count": 0, 强制返回空桶,默认会被过滤掉
"extended_bounds":{ 设置需要聚合的时间段,默认返回全部
"min":"2020-01",
"max":"2020-12"
}
},
"aggs": {
"cardinality_productID": {
"cardinality": {
"field": "productID.keyword"
}
}
}
}
}
}
- 我们想获取2020所有月份完成订单数量以及用户姓名,按照订单数量倒序排
GET /my_index/my_type/_search
{
"size": 0,
"aggs": {
"date_month": {
"date_histogram": {
"field": "createtime",
"interval": "month",
"format":"yyyy-MM",
"min_doc_count": 0,
"extended_bounds":{
"min":"2020-01",
"max":"2020-12"
},
"order": {
"cardinality_productID": "desc"
}
},
"aggs": {
"cardinality_productID": {
"cardinality": {
"field": "productID.keyword"
}
}
}
}
}
}
es创建普通索引以及各种查询的更多相关文章
- ES 记录之如何创建一个索引映射,以及一些设置
ElasticSearch 系列文章 1 ES 入门之一 安装ElasticSearcha 2 ES 记录之如何创建一个索引映射 3 ElasticSearch 学习记录之Text keyword 两 ...
- es创建索引的格式,并初始化数据
es创建索引的格式,并初始化数据 学习了:https://www.imooc.com/video/15759 1, 创建格式 POST 127.0.0.1:9200/book/novel/_mappi ...
- ArcGIS Engine 创建索引(属性索引)——提高查询效率
转自原文 ArcGIS Engine 创建索引(属性索引)——提高查询效率 众所周知,建立索引可以提高查询的效率,当对FeatureClass中的某一列频繁的查找,且数据量比较大时,建立索引是非常有必 ...
- MYSQ创建联合索引,字段的先后顺序,对查询的影响分析
MYSQ创建联合索引,字段的先后顺序,对查询的影响分析 前言 最左匹配原则 为什么会有最左前缀呢? 联合索引的存储结构 联合索引字段的先后顺序 b+树可以存储的数据条数 总结 参考 MYSQ创建联合索 ...
- Elasticsearch(ES) 创建索引
欢迎关注笔者的公众号: 小哈学Java, 每日推送 Java 领域干货文章,关注即免费无套路附送 100G 海量学习.面试资源哟!! 个人网站: https://www.exception.site/ ...
- 008-elasticsearch5.4.3【二】ES使用、ES客户端、索引操作【增加、删除】、文档操作【crud】
一.ES使用,以及客户端 1.pom引用 <dependency> <groupId>org.elasticsearch.client</groupId> < ...
- SQL Server索引视图以(物化视图)及索引视图与查询重写
本位出处:http://www.cnblogs.com/wy123/p/6041122.html 经常听Oracle的同学说起来物化视图,物化视图的作用之一就是可以实现查询重写,听起来有一种高大上的感 ...
- 通过手动创建统计信息优化sql查询性能案例
本质原因在于:SQL Server 统计信息只包含复合索引的第一个列的信息,而不包含复合索引数据组合的信息 来源于工作中的一个实际问题, 这里是组合列数据不均匀导致查询无法预估数据行数,从而导致无法选 ...
- Neo4j创建自动索引
一.创建Neo4j的Legacy indexing 1.为节点创建索引 官方API的创建示例为: 将一节点添加至索引: public static void AddNodeIndex(String n ...
随机推荐
- oracle中表加锁死锁的现象、原因及解决方案
一.表加锁.死锁出现的现象 1.对数据库操作update.insert.delete时候,数据库无法更新,操作等待时长,操作结果不发生改变: 2.在程序中,底层(数据访问层)操作时候不成功,数据库连接 ...
- 编写高质量代码的50条黄金守则-Day 02(首选readonly而不是const)
编写高质量代码的50条黄金守则-Day 02(首选readonly而不是const),本文由比特飞原创发布,转载务必在文章开头附带链接:https://www.byteflying.com/archi ...
- Golang gRPC学习(04): Deadlines超时限制
为什么要使用Deadlines 当我们使用gRPC时,gRPC库关系的是连接,序列化,反序列化和超时执行.Deadlines 允许gRPC客户端设置自己等待多长时间来完成rpc操作,直到出现这个错误 ...
- 【AHOI 2015】 小岛 - 最短路
描述 西伯利亚北部的寒地,坐落着由 N 个小岛组成的岛屿群,我们把这些小岛依次编号为 1 到 N . 起初,岛屿之间没有任何的航线.后来随着交通的发展,逐渐出现了一些连通两座小岛的航线.例如增加一条在 ...
- JAVA使用urlrewrite实现伪静态化
什么是伪静态? 伪静态字面理解就是假的静态,说的官方点就是“地址重写,用户得到的全部地址都是经过处理后的URL地址”. 为什么要伪静态呢? 提高安全性,可以有效的避免一些参数名.ID等完全暴露在用户面 ...
- JavaScript学习系列博客_29_JavaScript arguments
arguments (封装实参的对象) 在调用函数时,浏览器每次都会传递进两个隐含的参数:1.函数的上下文对象 this2.封装实参的对象 arguments- arguments是一个类数组对象,它 ...
- Python方法oslo_service.loopingcall.LoopingCallDone代码示例
Python方法oslo_service.loopingcall.LoopingCallDone代码示例 demo: from oslo_service import loopingcall def ...
- Vue管理系统前端系列五自定义主题
目录 自定义主题 1.安装「主题生成工具」 2.安装白垩主题 3.新建颜色挑选组件 自定义主题 1.安装「主题生成工具」 由于主题工具需要依赖于 node-sass,而node-sass版本兼容性并不 ...
- 【译】Database Profiling with Visual Studio
你是否在排查运行缓慢的 web 应用程序时怀疑是数据库层造成的?以前排查数据库层需要特定的工具,现在可以使用 Visual Studio 的 Performance Explorer 中的数据库分析工 ...
- JavaFX桌面应用-SpringBoot + JavaFX
SpringBoot对于Java程序员来说可以是一个福音,它让程序员在开发的时候,大大简化了各种spring的xml配置. 那么在JavaFX项目使用SpringBoot会是怎么样的体验呢? 这次使用 ...