强连通分量分解的Kosaraju算法

今天是算法数据结构专题的第35篇文章,我们来聊聊图论当中的强连通分量分解的Tarjan算法。

Kosaraju算法一看这个名字很奇怪就可以猜到它也是一个根据人名起的算法,它的发明人是S. Rao Kosaraju,这是一个在图论当中非常著名的算法,可以用来拆分有向图当中的强连通分量

背景知识

这里有两个关键词,一个是有向图,另外一个是强连通分量。有向图是它的使用范围,我们只能使用在有向图当中。对于无向图其实也存在强连通分量这个概念,但由于无向图的连通性非常强,只需要用一个集合维护就可以知道连通的情况,所以也没有必要引入一些算法。

有向图我们都了解,那么什么叫做强连通分量呢?强连通分量的英文是strongly connected components。这是一个很直白的翻译,要理解它我们首先需要理解强连通的概念。在有向图当中,如果两个点之间彼此存在一条路径相连,那么我们称这两个点强连通。那么推广一下,如果一张图当中的一个部分中的每两个点都连通,那么这个部分就称为强连通分量。

强连通分量一般是一张完整的图的一个部分,比如下面这张图当中的{1, 2, 3, 4}节点就可以被看成是一个强连通分量。

其实求解强连通分量的算法并不止一种,除了Kosaraju之外还有大名鼎鼎的Tarjan算法可以用来求解。但相比Tarjan算法,Kosaraju算法更加直观,更加容易理解。

算法原理

Kosaraju算法的原理非常简单,简单到只有三个步骤

  1. 我们通过后序遍历的方式遍历整个有向图,并且维护每个点的出栈顺序
  2. 我们将有向图反向,根据出栈顺序从大到小再次遍历反向图
  3. 对于点u来说,在遍历反向图时所有能够到达的v都和u在一个强连通分量当中

怎么样,是不是很简单?

下面我们来详细阐述一下细节,首先后序遍历和维护出栈顺序是一码事。也就是在递归的过程当中当我们遍历完了u这个节点所有连通的点之后,再把u加入序列。其实也就是u在递归出栈的时候才会被加入序列,那么序列当中存储的也就是每个点的出栈顺序。

这里我用一小段代码演示一下,看完也就明白了。

popped = [] # 存储出栈节点

def dfs(u):
    for v in Graph[u]:
        dfs(v)
        popped.append(u)

我们在访问完了所有的v之后再把u加入序列,这也就是后序遍历,和二叉树的后序遍历是类似的。

反向图也很好理解,由于我们求解的范围是有向图,如果原图当中存在一条边从u指向v,那么反向图当中就会有一条边从v指向u。也就是把所有的边都调转反向。

我们用上面的图举个例子,对于原图来说,它的出栈顺序我们用红色笔标出。

也就是[6, 4, 2, 5, 3, 1],我们按照出栈顺序从大到小排序,也就是将它反序一下,得到[1, 3, 5, 2, 4, 6]。1是第一个,也就是最后一个出栈的,也意味着1是遍历的起点。

我们将它反向之后可以得到:

我们再次从1出发可以遍历到2,3, 4,说明{1, 2, 3, 4}是一个强连通分量。

怎么样,整个过程是不是非常简单?

我们将这段逻辑用代码实现,也并不会很复杂。

N = 7
graph, rgraph = [[] for _ in range(N)], [[] for _ in range(N)]
used = [False for _ in range(N)]
popped = []

# 建图
def add_edge(u, v):
    graph[u].append(v)
    rgraph[v].append(u)

# 正向遍历
def dfs(u):
    used[u] = True
    for v in graph[u]:
        if not used[v]:
            dfs(v)
    popped.append(u)

# 反向遍历
def rdfs(u, scc):
    used[u] = True
    scc.append(u)
    for v in rgraph[u]:
        if not used[v]:
            rdfs(v, scc)
            
# 建图,测试数据         
def build_graph():
    add_edge(1, 3)
    add_edge(1, 2)
    add_edge(2, 4)
    add_edge(3, 4)
    add_edge(3, 5)
    add_edge(4, 1)
    add_edge(4, 6)
    add_edge(5, 6)

if __name__ == "__main__":
    build_graph()
    for i in range(1, N):
        if not used[i]:
            dfs(i)

    used = [False for _ in range(N)]
    # 将第一次dfs出栈顺序反向
    popped.reverse()
    for i in popped:
        if not used[i]:
            scc = []
            rdfs(i, scc)
            print(scc)

思考

算法讲完了,代码也写了,但是并没有结束,仍然有一个很大的疑惑没有解开。算法的原理很简单,很容易学会,但问题是为什么这样做就是正确的呢?这其中的原理是什么呢?我们似乎仍然没有弄得非常清楚。

这里面的原理其实很简单,我们来思考一下,如果我们在正向dfs的时候,u点出现在了v点的后面,也就是u点后于v点出栈。有两种可能,一种可能是u点可以连通到v点,说明u是v的上游还有一种可能是u不能连通到v,说明图被分割成了多个部分。对于第二种情况我们先不考虑,因为这时候u和v一定不在一个连通分量里。对于第一种情况,u是v的上游,说明u可以连通到v。

这时候,我们将图反向,如果我们从u还可以访问到v,那说明了什么?很明显,说明了在正向图当中v也有一条路径连向u,不然反向之后u怎么连通到v呢?所以,u和v显然是一个强连通分量当中的一个部分。我们再把这个结论推广,所有u可以访问到的,第一次遍历时在它之前出栈的点,都在一个强连通分量当中。

如果你能理解了这一点,那么整个算法对你来说也就豁然开朗了,相信剩下的细节也都不足为虑了。

今天的文章到这里就结束了,如果喜欢本文的话,请来一波素质三连,给我一点支持吧(关注、转发、点赞)。

原文链接,求个关注

- END -

算法数据结构 | 三个步骤完成强连通分量分解的Kosaraju算法的更多相关文章

  1. (转)求有向图的强连通分量个数(kosaraju算法)

    有向图的连通分量的求解思路 kosaraju算法 逛了很多博客,感觉都很难懂,终于找到一篇能看懂的,摘要记录一下 原博客https://www.cnblogs.com/nullzx/p/6437926 ...

  2. 求有向图的强连通分量个数 之 Kosaraju算法

    代码: #include<cstdio> #include<cstring> #include<iostream> using namespace std; ][] ...

  3. Kosaraju算法、Tarjan算法分析及证明--强连通分量的线性算法

    一.背景介绍 强连通分量是有向图中的一个子图,在该子图中,所有的节点都可以沿着某条路径访问其他节点.强连通性是一种非常重要的等价抽象,因为它满足 自反性:顶点V和它本身是强连通的 对称性:如果顶点V和 ...

  4. 强连通分量分解 Kosaraju算法 (poj 2186 Popular Cows)

    poj 2186 Popular Cows 题意: 有N头牛, 给出M对关系, 如(1,2)代表1欢迎2, 关系是单向的且能够传递, 即1欢迎2不代表2欢迎1, 可是假设2也欢迎3那么1也欢迎3. 求 ...

  5. 求强连通分量模板(tarjan算法)

    关于如何求强连通分量的知识请戳 https://www.byvoid.com/blog/scc-tarjan/ void DFS(int x) { dfn[x]=lowlink[x]=++dfn_cl ...

  6. POJ2186 Popular Cows 【强连通分量】+【Kosaraju】+【Tarjan】+【Garbow】

    Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 23445   Accepted: 9605 Des ...

  7. 强连通分量的模版 Kosaraju+Tarjan+Garbow

    PS:在贴出代码之前,我得说明内容来源——哈尔滨工业大学出版的<图论及应用>.虽然有一些错误的地方,但是不得不说是初学者该用的书. 从效率的角度来说,Kosaraju <Tarjan ...

  8. poj 1236(强连通分量分解模板题)

    传送门 题意: N(2<N<100)个学校之间有单向的网络,每个学校得到一套软件后,可以通过单向网络向周边的学校传输. 问题1:初始至少需要向多少个学校发放软件,使得网络内所有的学校最终都 ...

  9. POJ2186(强连通分量分解)

    Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 35035   Accepted: 14278 De ...

随机推荐

  1. DB2根据报错代码查看表与字段信息

    select * from syscat.tables where tbspaceid='?' and tableid='?' select * from syscat.columns where t ...

  2. 面试题——20+Vue面试题整理

    0.那你能讲一讲MVVM吗? MVVM是Model-View-ViewModel缩写,也就是把MVC中的Controller演变成ViewModel. Model层代表数据模型,View代表UI组件, ...

  3. python智能图片识别系统(图片切割、图片识别、区别标识)

    @ 目录 技术介绍 运行效果 关键代码 写在最后 技术介绍 你好! python flask图片识别系统使用到的技术有:图片背景切割.图片格式转换(pdf转png).图片模板匹配.图片区别标识. 运行 ...

  4. Newbe.Claptrap 框架如何实现在多种框架之上运行?

    Newbe.Claptrap 框架如何实现在多种框架之上运行?最近整理了一下项目的术语表.今天就谈谈什么是 Claptrap Box. 特别感谢 kotone 为本文提供的校对建议! Newbe.Cl ...

  5. Spring配置文件中bean标签中init-method和destroy-method和用注解方式配置

    Person类: public class Person {       private int i = 0;          public Person(){           System.o ...

  6. goalng包和命令工具

    1. 包简介 任何包系统设计的目的都是为了简化大型程序的设计和维护工作,通过将一组相关的特性放进一个独立的单元以便于理解和更新,在每个单元更新的同时保持和程序中其它单元的相对独立性.这种模块化的特性允 ...

  7. Java14版本特性【一文了解】

    「MoreThanJava」 宣扬的是 「学习,不止 CODE」,本系列 Java 基础教程是自己在结合各方面的知识之后,对 Java 基础的一个总回顾,旨在 「帮助新朋友快速高质量的学习」. 当然 ...

  8. 双操作系统(ubuntu/windows7)安装教程

    前言 前两天出于项目原因,本人心血来潮地给久经战场的电脑老大哥找个小媳妇,哈哈哈,装了两个系统.分别是用了多年的win7和接触不久的Ubuntu,在其中遇到了一些坑,在此记录下来,希望能给自己和大家带 ...

  9. 前端ES6 一些面试题

    1.ES5.ES6和ES2015有什么区别? ES2015特指在2015年发布的新一代JS语言标准,ES6泛指下一代JS语言标准,包含ES2015.ES2016.ES2017.ES2018等.现阶段在 ...

  10. windows设置定时执行脚本

    如果你写了一些Python程序,想要在特定的时间进行执行,例如你想让一段爬虫程序在每天的上午10点执行一次,那么我们就可以来使用windows自带的定时任务进行设置.由于Windows系统,无法使用L ...